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Mobile broadband communication is experiencing rapid growth in technology, mar-

kets and range of services. This rapid growth has driven the recent surge of research

and development activities for high-data-rate/high-mobility wireless systems, with

improved network performance and enhanced economics. One technology thrust in

wireless communications is the use of adaptive antennas at the transceivers, along

with the associated advanced array signal processing, to improve cell coverage, link

quality and system capacity.

This dissertation first provides a framework of adaptive antenna systems for

wireless communications, and characterizes the multipath fading channels of mobile

broadband systems. In particular, we consider antenna systems for the base station,

as well as multiple-input multiple-output systems where antenna systems are utilized

at both the base station and the mobile unit. It is proved that the channel fading

can be modeled and predicted using linear models of low order. The correlation

of fading at multiple antennas or over the wideband is exploited to perfect channel

modeling and prediction.
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Secondly, this dissertation develops the theory of adaptive antenna arrays

with applications to mobile broadband systems. Through analysis of the propa-

gation pattern and the channel structure, new techniques of uplink power control

and downlink beamforming are derived to adapt to the rapid variation of the vector

channel. The low variability of the channel subspace and the negligible distance

between uplink and downlink channel subspaces are exploited to enhance the per-

formance of adaptive transmission. Constraints are put on the model structure,

which leads to a reduction of computational complexity of the channel estimation.

Finally, this dissertation describes the correlation of sub-channels embedded

in the multiple-input multiple-output antenna systems, and discusses its effect on the

channel capacity. Multiple antennas with dissimilar radiation patterns are employed

to introduce decorrelation of the sub-channels, thus increasing channel capacity.

Specifically, a prototype of compact antenna array at the mobile unit is proposed

that exploits antenna pattern diversity.

In summary, this dissertation investigates the modeling and prediction of the

time-varying multipath channels of antenna systems, while developing new tech-

niques for mobile broadband communications that are based on the channel charac-

terization. The general feasibility of the algorithms developed in this dissertation is

demonstrated through a ray tracing simulator in various scattering environments.
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Chapter 1

Introduction

1.1 Mobile Cellular Communications

The demand on information exchange has pushed the development of wireless com-

munication systems at an unprecedented pace. As the wireless network matures and

more users are added, a desire for high system capacity is inevitable. The radio spec-

trum for wireless communications is a limited resource, it will be stretched out to its

limit to accommodate various current and emerging wireless services. To meet the

capacity need of the explosive growth of wireless communications, new techniques

are required to improve the quality and spectrum efficiency of communications over

radio channels.

Cellular radio systems exploit the power falloff with distance of a transmit-

ted signal to reuse a communication channel at spatially separated locations. The

communication channel can be a frequency band, a time slot, or a unique code. The

finite spectrum is made available throughout a geographical area by dividing the

region into a number of smaller cells. In analog cellular systems, each cell uses a

portion of the spectrum. Cells which are sufficiently far apart can reuse the same

spectrum resources. A unique feature of code division multiple access (CDMA) sys-
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Figure 1.1: Architecture of a cellular network.

tems is that, the spectrum resources are reused from cell to cell. Each cell is served

by a base transceiver station (BTS), which is responsible for handling communica-

tions with mobile users within its respective cell. When a mobile user crosses the

boundary of two cells, its communication channel is handed off to the BTS in the

new cell. A group of BTSs are connected to a base station controller (BSC), which

may be integrated into a cell site. The BSC manages radio resources and network

functions between multiple BTSs. The BSC is connected to the mobile switching

center (MSC), which is responsible for all call handling as well as interfaces to other

switching elements. The MSC exchanges voice traffic with the public switching

telephone network (PSTN) or the integrated service digital network (ISDN), or ex-

changes data traffic with Internet-protocol networks. The top-level architecture of a
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cellular network is illustrated in Figure 1.1. The physical limitations of the wireless

channel present a fundamental challenge for reliable communications. The research

conducted in this dissertation is focused on the wireless point-to-point link within

a cell.

To utilize spectrum efficiently within a cell, two transmission techniques need

to be investigated: one is the duplex scheme, which provides the two-way conver-

sation between the base station and the mobile user, and the other is the multiple

access scheme, which supports the concurrent conversations between the base station

and multiple active users [1].

Most of the current mobile cellular systems employ channels that are sepa-

rated in frequency for the uplink (mobile to base station) and the downlink (base

station to mobile). This technique is called frequency division duplex (FDD). Other

systems use the same frequency channels for both uplink and downlink, allowing the

uplink and the downlink to use the frequency band during different time slots. This

technique is called time division duplex (TDD). Recently, there is some development

in using a set of smart codes, which have orthogonality among the codes for nonzero

time shift, for simultaneous uplink and downlink in the same frequency band. This

so called code division duplex (CDD) scheme can also effectively eliminate the in-

terferences from adjacent cells [2]. Typically, the uplink and downlink channels are

divided into different types of channels: the access channels (ACH) are used to set

up calls and handle various control functions, and the traffic channels (TCH) are

used to carry voice and data information.

When a base station communicates with multiple users, frequency division

multiple access (FDMA) assigns different radio-frequency (RF) channels to individ-

ual mobile users. Each user is allocated a unique frequency band within the cell.

Time division multiple access (TDMA) allows a number of users to access a single

RF channel without interference by allocating unique time slots to each user. Each
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mobile user occupies a set of cyclically repeating time slots. TDMA is a digital

transmission technology because the system transmits data in a buffer-and-burst

mode, therefore digital data and digital modulation must be used. Code division

multiple access (CDMA) is a spread-spectrum technology that allows multiple users

to use the same frequency band and to transmit simultaneously. CDMA codes every

digital packet it sends with a unique key. A CDMA receiver responds only to the

unique key and can pick out and demodulate the associated signal. CDMA’s ro-

bust data performance leads the way to a plethora of enhanced services, with which

the recent wireless industry has been established. Space division multiple access

(SDMA), which exploits the use of an antenna array at the base station, controls

the radiated energy for each user in space. SDMA serves different mobile users by

forming antenna beams according to the physical location of the users. These dif-

ferent areas covered by the antenna beam may be served by the same frequencies

(in TDMA or CDMA systems) or different frequencies (in FDMA systems).

1.2 3G Wireless Systems and Mobile Broadband Sys-

tems

While the step from the first to the second generation of wireless systems mainly

brought the transition from analog to digital, the third generation (3G) systems

are driven by the fast rise of the Internet and ever increasing need for high-speed

data transmission capabilities while on the move. The requirement for high-speed

data transmission, especially packet data transmission, brings a whole new set of

challenges for 3G systems. With substantially enhanced capacity, quality, and data

rates, 3G wireless technology provides customers with high-speed wireless access to

the Internet and multimedia services, anytime and anywhere.

A whole family of standards are grouped together under the IMT-20001 label,
1IMT-2000 (International Mobile Telecommunications-2000) is the International Telecommuni-

4



such that mobile devices using different standards will be able to move seamlessly be-

tween all networks, thus providing global roaming. The 3G standard that has been

agreed for Europe and Japan is known as Universal Mobile Telecommunications

System (UMTS). UMTS is an upgrade from Global System for Mobile Communica-

tion (GSM) via General Packet Radio System (GPRS) or Enhanced Data Rates for

GSM Evolution (EDGE). The terrestrial part of UMTS (i.e., non-satellite) is known

as UMTS Terrestrial Radio Access (UTRA). The UTRA standard is a wideband

CDMA (W-CDMA) technology that includes features that ensure easy integration

with existing GSM technology. The FDD component of UTRA is based on the W-

CDMA standard (a.k.a. UTRA FDD). It offers very high data rates up to 2 Mbps.

The TDD component of UTRA is called TD-CDMA (or UTRA TDD). The main

global competitor to UMTS is CDMA2000, the 3G standard developed in the United

States by Qualcomm. CDMA2000 will deliver full IMT-2000 capabilities (data rates

of up to 2 Mbps) in one-third as much spectrum as in W-CDMA. And CDMA2000

is backward compatible with the cdmaOne technology that has been already used

by nearly 70 million subscribers. Other less-publicized standards include the TD-

SCDMA, the Chinese national 3G standard. TD-SCDMA is a TDD standard simi-

lar to TD-CDMA, and it eliminates the uplink/downlink interference which affects

other TDD methods by applying “terminal synchronization” techniques (the “S” in

TD-SCDMA stands for “synchronization”). Because of this, TD-SCDMA allows full

network coverage over macro-cells, micro-cells, and pico-cells. Hence, TD-SCDMA

stands alongside W-CDMA and CDMA2000 as a fully-fledged 3G standard.

Wireless carriers provide the unique benefits of small device form, mobile

access and location-based services that wired carriers can not offer. To remain com-

petitive and to satisfy customer expectations, 3G operators must create a wireless

network experience in a mobile environment that comes close to what subscribers

cation Union (ITU) globally coordinated definition of 3G covering key issues such as frequency
spectrum use and technical standards.
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Figure 1.2: Service data rate versus user mobility of various systems.

currently receive over wired networks. Figure 1.2 compares the service data rate

of the mobile systems of various standards to that of fixed Integrated Service Dig-

ital Network (ISDN) and Broadband-ISDN (B-ISDN). The figure indicates that 2

Mbps is achievable by very slow (movable) terminals of UMTS (or W-CDMA) and

CDMA2000, whereas slow and fast mobile terminals can only access communications

up to 384 and 144 Kbps, respectively. As for high-data-rate wireless access with a

fast mobile, Mobile Broadband Systems (MBS) will play an important role in the

wireless communications market in the near future [3]. In terms of terminal mobility

and supported data rates, MBS operation begins where UMTS/CDMA2000 ends as

shown in Figure 1.2. The achievable data rate of MBS is aimed at 155 Mbps as the

upper bandwidth of B-ISDN, however, a decreasing shape (towards high mobility)

is also likely to appear at the upper bound of the data rate.
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This dissertation research has been prompted by the current thrust in wire-

less communications to look for new technologies to support the mobile broadband

systems.

1.3 Antenna Systems for Broadband Wireless Access

Adaptive antenna systems (or smart antenna systems) offer a broad range of ways

to improve the performance of wireless communications. The use of antenna arrays

helps mitigate three major impairments caused by the wireless channel: fading, delay

spread, and co-channel interference. An antenna array at the base station provides

enhanced coverage through range extension, and it provides robustness to system

perturbations and reduced sensitivity to non-ideal behavior. With antenna array,

the base station can suppress the interference due to co-channel users (either from

adjacent cell or same cell), and enhance the desired signal level by mitigating the

impact of multipath or even exploiting the diversity inherent in multipath. Antenna

array can be used to allow the mobile user and base station to operate at the same

range as a conventional system, but at lower power. Antenna array can also be

used to spatially separate signals, which is known as the space division multiple

access (SDMA) technique. SDMA allows multiple users to operate in the same cell,

on the same time/frequency slot provided. These two advantages of the adaptive

antennas lead to improved system capacity. In this dissertation, if adaptive antennas

are equipped at the base station but not at the user terminal, the wireless link is

termed the vector channel ; if adaptive antennas are equipped at both ends, the

wireless link is termed the matrix channel.

The technologies of broadband wireless access must be able to cope with the

hostile wireless environment, especially in the fast mobile scenarios. Antenna sys-

tems in the form of adaptive antenna array can provide an effective and promising

solution while achieving reliable and robust high-mobility high-date-rate transmis-

7



sion [4]. The earliest form of antenna system for improving the performance of

wireless communication systems is antenna diversity. It helps mitigate the effects of

fading. Antenna diversity has been in commercial use at the base station of most

wireless communications for many years. Over the last two decades, smart antenna

systems, which attempt to actively mitigate co-channel interference, have also been

developed [5]. The broadband channel and the fast Rayleigh fading experienced by

the high-data-rate high-mobility wireless systems bring new challenges to the adap-

tive antenna systems. In this dissertation, we propose a series of new techniques

of the adaptive antenna systems for the mobile broadband communications, which

range from vector channel estimation/prediction to array processing, such as power

control and beamforming.

Recently, there have been some important developments of the adaptive an-

tenna systems, which include the idea of space-time receivers [6], space-time cod-

ing [7, 8, 9], and multiple-input multiple-output (MIMO) antenna systems [10, 11,

12]. MIMO antenna systems, which use multiple transmit and multiple receive an-

tennas, are exploring the full potential of antenna systems for broadband wireless

communications [13]. They can improve link reliability through diversity advantage

and can increase potential data rate through multiplexing gain. MIMO systems

for the mobile broadband communications is an ongoing topic of this dissertation

research.

1.4 Dissertation Overview

In this introductory chapter, the recent development of mobile communication sys-

tems is presented. Mobile broadband systems, i.e. high-mobility wireless systems

with performance comparable to the broadband wired networks, will be in huge

market demand in the near future. Adaptive antenna system is one of the key tech-

nologies for increasing reliability and data rate of wireless communications. These

8



two facts have motivated this dissertation research.

Chapter 2 describes the wireless fading channel. It presents the radio propa-

gation mechanism and introduces an uncorrelated scattering model. The frequency-

selective fading of wideband signals is discussed. This chapter develops the wide-

band channel modeling, and proposes a prediction approach for the channel transfer

function over the wideband.

Chapter 3 introduces the vector channel model of an antenna system. A dy-

namic uplink power control scheme is given to combat Rayleigh fading of the signals

transmitted by a fast mobile. The power control relies on the channel prediction that

exploits the fading correlation between the access channel and the traffic channel of

an antenna system.

Chapter 4 proposes two novel downlink beamforming approaches for trans-

mission over fast Rayleigh fading channels. The first approach is based on the

prediction of the downlink channel, and the second one is based on the analysis of

the uplink channel subspace.

Chapter 5 presents a blind estimation algorithm for the vector channels of

wideband CDMA systems. The algorithm is computationally efficient because it

takes into account the wideband channel constraints and reduces the number of

unknown model parameters.

Although the main focus of this dissertation is on the wireless communica-

tions over vector channels, i.e. adaptive antenna array at one end of the commu-

nication link, MIMO systems (matrix channels) are also explored as the prolog of

future research. Chapter 6 presents the ongoing research on the MIMO systems

that exploit antenna pattern diversity. A ray-tracing simulator, FASANT, is used

to study the channel capacity of MIMO systems, and its dependence on the char-

acteristics of the scattering environment. Later, a prototype of MIMO handheld

terminal is proposed, which has a compact antenna array that exploits antenna

9



pattern diversity.

Chapter 7 summarizes the dissertation and discusses future areas of research.

Several of the main ideas in this dissertation have been published or submit-

ted for publication. The work on wideband channel prediction is published in [14].

The dynamic uplink power control based on channel prediction is published in [15].

The ideas of downlink beamforming for fast Rayleigh fading signals are presented

in [16, 17]. The low-complexity channel estimation of wideband CDMA is published

in [18]. The capacity study of MIMO systems that exploit antenna pattern diver-

sity is presented in [19], and the design of compact antenna array at the handheld

terminal is presented in [20].
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Chapter 2

Modeling and Prediction of

Mobile Radio Channels

2.1 Introduction

The mobile radio propagation environment places fundamental limitations on the

performance of wireless communication systems. Signals arrive at a receiver via

a scattering mechanism and the existence of multipath with different time delays,

attenuations and phases give rise to a highly complex, time-varying, transmission

channel. In order to mitigate the impairment caused by multipath propagation, it

is essential to characterize the transmission channel. Under fast fading conditions,

channel characteristics may change drastically over short period of time. Therefore,

the dynamic behavior of the channel needs to be tracked for optimization of the

adaptive functions of modems, such as automatic gain control (AGC), equalization,

and timing recovery.

The radio channel in a wireless communication system is often characterized

by multipath propagation. A fading signal results from interference between multi-

path components at the receiver. For transceivers moving at high speed, the channel
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varies dramatically and undergoes deep fades within a typical time frame of several

milliseconds. Future mobile systems will use higher carrier frequencies, with associ-

ated higher fading rates. Since the channel changes rapidly, usually the transceivers

are not optimized for current channel conditions and thus fail to exploit the full

potential of the wireless channels. To improve the system performance, adaptive

transmission techniques are applied to combat the fast fading channel effect. To

realize the potential of adaptive transmission methods, fading channel variations

have to be reliably predicted at least several milliseconds ahead [21].

Recently, researchers have speculated that the fading process is in fact a

deterministic sinusoidal process with time-varying parameters, and can be charac-

terized using a discrete scatter propagation model [22]. Spectral estimation followed

by linear prediction and interpolation is applied in [23] and [21] to predict the evo-

lution of the channel. This algorithm characterizes the fading channel using an

autoregressive (AR) model. Subspace-based methods are also used to predict the

channel. A modified root-MUSIC algorithm is used in [24], and an ESPRIT algo-

rithm is used in [25] to estimate the dominant sinusoids that make up the fading

channel. Then these sinusoids are extrapolated to predict future channel samples.

These algorithms predict the fading channels encountered in narrowband mobile

communication systems. In [26], the statistical dependencies in sequences of wide-

band mobile radio channel data are measured, and a nonlinear model is used for the

fading channel prediction.

In this chapter, we study the multipath fading effect of wireless channels,

and later propose an ESPRIT-type [27] algorithm to predict the frequency-selective

channel in wideband systems. The time-varying channel transfer function at differ-

ent frequencies within the wideband are modeled and predicted jointly, assuming

that the scatterers remain constant. Simulation results show that the joint-frequency

prediction scheme has superior performance over conducting the channel prediction

12



Figure 2.1: A typical mobile radio propagation environment.

on a single frequency.

2.2 Radio Propagation

Due to multipath propagation, the composite received signal is the sum of the signals

arriving along different paths. As shown in Figure 2.1, except for the line-of-sight

(LOS) path, all paths are going through at least one order of reflection or diffraction

before arriving at the receiver. The average received signal power decreases as the

distance from transmitter increases. In addition, phase alignment or cancellation of

arriving paths results in considerable amplitude fluctuation of the composite received

signal from one location to another. The time dispersion and random amplitude and
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phase fluctuations in the received signal, a set of characteristics of channel effect, is

termed multipath fading. The multipath channel impulse response is represented by

h(τ ; t) =
L∑

i=1

βi(t)δ(τ − τi(t)) (2.1)

where L is the number of paths, βi and τi represent the complex gain and the delay

of the ith arriving path.

Delay Spread The span of the time dispersion of arriving paths is referred

to as multipath delay spread of the channel. Taken into account the signal intensity

over the delay span, a good measure is the root mean square (rms) delay spread,

given by

τrms =
√

τ̄2 − (τ̄)2 (2.2)

where,

τ̄n =
∑

τn
i |βi|2∑ |βi|2 , n = 1, 2

The inverse of the rms delay spread is referred to as the coherence bandwidth of

the channel. Wideband signal has high data rate in comparison to the coherence

bandwidth.

Doppler Spread With the relative motion of the transmitter and the receiver,

or the change of the transmission media, e.g. movement of reflectors, the received

signal experiences Doppler frequency shift. The spreading within the maximum

frequency shift is referred to as the Doppler spread. Figure 2.2 shows the typical

Doppler spectrum of the Clarke model [28]. For values of f close to ±fm the height

of the Doppler component rises to two high peaks at the edges of the spectrum. In

the presence of a strong LOS component, the spectrum has an additional impulse

representing the shift associated with the strong component. The mathematical

definition of Doppler spectrum will be given in the next section.
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Figure 2.2: Doppler spectrum of mobile radio channel.

The adaptation time of algorithms used in the receiver must be faster than

the Doppler spread of the channel in order to accurately track the fluctuations in

the received signal. Ideally, a simulation should provide “snapshots” of the channel

response, in either time or frequency domain, at a rate twice the maximum Doppler

shift of the channel.

Received Signal Envelope The received signal power is proportional to the

distance between transmitter and receiver d, raised to a certain exponent which is

referred to as the distance-power gradient α. Also, we expect different path losses

in different directions due to the randomness of surrounding environment. This is

usually referred to as shadow fading or large-scale fading. Results of measurements

on indoor and urban radio channels show that a lognormal distribution best fits the
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Figure 2.3: Magnitude of received signal: Carrier 2 GHz, Mobile speed 100 km/h.

large-scale variations of the signal amplitude. Therefore, the total path loss Lp in

decibels is given by

Lp = L0 + 10α log10 d + l (2.3)

where, L0 is defined as the path loss in decibels at an initial distance (e.g. 1 m), l is

a lognormal-distributed random variable representing the shadow fading.

With multipath fading in areas with dimensions on the order of a wavelength

of the carrier frequency, the statistical fluctuation of the amplitude of the received

power is the superposition of fast local multipath fading over slow shadow fading.

The slow shadow fading component causes changes in the mean value of the received

power as the terminal moves from one area to another. The fast fading component

changes rapidly as the transmitter or the receiver moves slightly or other objects

are moved in the vicinity of the transmitter or the receiver. In this dissertation,
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we focus on the problems caused by multipath fading, assuming the large-scale pass

loss remains stationary.

Invoking the central limit theorem, the received signal amplitude experienc-

ing multipath fading obeys a Rayleigh distribution in the absence of LOS (Fig-

ure 2.3). With the existence of LOS adding a nonzero mean, the received amplitude

is assumed to be Rician. The same argument leads to the conclusion that the phase

is uniformly distributed in the interval [0, 2π).

2.3 The Uncorrelated Scattering Model

Bello [29] suggested the wide-sense stationary uncorrelated scattering (WSSUS)

model, assuming that the signal variations on paths arriving at different delays

are uncorrelated and the correlation properties of the channel are stationary. The

autocorrelation of the observed impulse response at two different delays and two

different times is given by

Rhh(τ1, τ2; t1, t2) = E{h(τ1; t1)h∗(τ2; t2)} = Rhh(τ1;∆t)δ(τ1 − τ2) (2.4)

Given the assumption of uncorrelated scattering, the only nonzero value of the cor-

relation is observed when the delays are the same; given stationary, the correlation

values depend only on the time difference. For ∆t = 0, this function is represented

by Q(τ) and is referred to as the delay power spectrum of the channel:

Q(τ) = Rhh(τ ; 0) (2.5)

Thus, the rms delay spread can be expressed as

τrms =

√∫∞
−∞(τ − τ̄)2Rhh(τ)dτ∫∞

−∞Rhh(τ)dτ
(2.6)

where

τ̄ =
∫ ∞

−∞
τRhh(τ)dτ
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If it is assumed that the channel does not change with time, the rms delay spread

is the same as given by (2.2).

With wideband signaling, the frequency response over the signal band ex-

hibits amplitude variations from one frequency to another. The multipath channel

causes constructive interference and signal enhancement at certain frequencies but

destructive interference and deep fades at other frequencies. This is referred to

as frequency selective multipath fading. In order to characterize these variations

statistically, the correlation in the frequency domain is exploited,

RHh(f1, f2;∆t) = E{H(f1; t)H∗(f2; t + ∆t)}

=
∫ ∞

−∞

∫ ∞

−∞
E{h(τ1; t)h∗(τ2; t + ∆t)}ej2π(f2τ2−f1τ1)dτ1dτ2

=
∫ ∞

−∞
Rhh(τ1; ∆t)ej2π∆fτ1dτ1 (2.7)

where ∆f = f2 − f1. With WSSUS assumption, the channel response h(τ ; t) is

a wide sense stationary zero-mean Gaussian process in t. Therefore the frequency

response H(f ; t), being obtained as a linear operation on h(τ ; t), is also a wide sense

stationary zero-mean Gaussian process in t. Hence,

RHh(f1, f2;∆t) = RHh(∆f ; ∆t) (2.8)

For a slowly time-varying channel,

RHh(∆f ;∆t) ' RHh(∆f ; 0) (2.9)

which is the Fourier transform of the delay power spectrum.

For general time-varying channel, the Fourier transform of RHh on the time

variable yields

RHH(∆f ; λ) =
∫ ∞

−∞
RHh(∆f ;∆t)e−j2πλ∆td(∆t) (2.10)

for ∆f = 0 if gives

D(λ) = RHH(0;λ) (2.11)
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Figure 2.4: Correlation functions in WSSUS model.

the Doppler power spectrum of the channel, which represents the strength of the

Doppler shift at different frequencies. The width of the Doppler power spectrum is

referred to as the Doppler spread of the channel and provides a measure of the fading

rate of the channel. The reciprocal of the Doppler spread is called the coherence

time of the channel, which is a measure of the time interval over which a transmitted

symbol will be relatively undisturbed by channel fluctuation.

The Fourier transform of Rhh(τ ;∆t) over ∆t is called the scattering function:

S(τ, λ) = RhH(τ ; λ) (2.12)

which represents the rate of variations of the channel at different delays. In practice
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it is usually assumed that the time and frequency components of the scattering

function are independent. Therefore, scattering function can be decomposed into

the delay and Doppler power spectra,

S(τ, λ) = Q(τ)×D(λ) (2.13)

Figure 2.4 summarizes the correlation functions of WSSUS model.

2.4 Wideband Signal and Frequency Selective Fading

As the signal bandwidth increases in the case of W-CDMA, i.e. the symbol duration

gets shorter, the delay spread becomes relatively large such that it is comparable to

the symbol duration:

τi ∼ Ts = B−1 (2.14)

As the multipath channel impulse response expressed in (2.1), with βi = αie
jφi for

time-invariant channel, the channel transfer function is given by

H(f) =
L∑

i=1

αi exp(jφi − j2πfτi) (2.15)

For example, assuming there are 2 paths between the transmitter and the receiver

and assuming that τ1 = 0, τ2 = 0.1, φ1 = φ2 = 0, α1 = α2 = 1 and B = 20 Hz, the

magnitude of the transfer function is showed in Figure 2.5. Clearly, in this wideband

scenario with two equal strength paths, where (τ2 = 0.1) ∼ (Ts = 0.05), spectral

components are distorted in the signal bandwidth.

2.5 Wideband Channel Modeling

The baseband equivalent channel between the base station (BS) and the mobile is

modeled using the time-varying impulse response

h(τ ; t) =
L∑

k=1

βk(t)δ(τ − τk) (2.16)
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Figure 2.5: Magnitude of the channel transfer function: two equal strength paths.

where L is the total number of multipaths from discrete scatterers. The variable t

indicates the time-varying property, and τ is the delay variable. βk and τk are the

complex amplitude and path delay of the kth multipath component, respectively.

Due to the motion of the mobile or the scatterers, the BS received signals

experience Doppler frequency spread. The increased mobility results in fast fading in

which the channel exhibits rapid temporal variations, such that the performance of

the cellular radio system is substantially degraded. Fast-fading channels encountered

in practice exhibit Doppler spreads on the order of 100-200 Hz. At higher and

higher carrier frequencies of new generation wireless systems, the radio channel will

vary dramatically within a typical data frame of several milliseconds. The complex

amplitude βk(t) can be expressed as

βk(t) = αke
j(2πfkt+φk) (2.17)
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where αk, fk, φk are the path loss, Doppler frequency shift and phase offset of the

kth multipath component, respectively. The Doppler frequency is given by fk =

fc
v
c cos(θk), where fc is the carrier frequency, v is the speed of the mobile, c is the

speed of light, and θk is the angle between the kth mobile incident ray and the mobile

moving direction. The fading channel varies rapidly with increases in mobile speed.

We assume a far-field condition, where the path loss and the phase offset remain

constant during the short time of the channel analysis and prediction range. At

carrier frequencies as high as several giga-hertz, typical motion of the mobile may

be linearized over distances of several wavelengths.

For the frequency-selective fading channels in wideband systems, the knowl-

edge of the channel transfer function over the entire frequency band is required.

The channel transfer function which is the Fourier transform of the channel impulse

response on the argument τ is

H(f ; t) =
L∑

k=1

βk(t)e−j2πfτk (2.18)

In wideband channels, the difference between path delays {τk} can not be neglected.

Therefore, a wideband channel undergoes frequency-selective multipath fading. The

transfer function at one particular frequency fm is given by

H(fm; t) =
L∑

k=1

αke
j(2πfkt+φk)e−j2πfmτk

=
L∑

k=1

αk(fm) ej2πfkt =
L∑

k=1

αmkz
t
k (2.19)

where e−j2πfmτk and φk are absorbed into the complex gain αmk, and zk = ej2πfk .

{zT
k , k = 1, . . . , L} are the so-called channel poles, where 1/T is the sampling rate.

Although it requires a large L for H(fm; t) to experience Rayleigh fading, when

deterministic Jakes model is used, the theoretical Doppler spectrum of the Rayleigh

fading channel can be accurately approximated by a summation of a relatively small
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number of dominant (in terms of energy) sinusoids [30]. The parameters αmk and

fk of these significant multipath components are assumed constant in the model,

and they are estimated in order to predict the composite fading channel in future

time. The Doppler frequency shift fk is independent of fm. Therefore, the Rayleigh

time-variations of the channel transfer function at different frequencies are highly

correlated, as they have the same channel poles. This fact enables us to collect the

channel samples at different frequencies and estimate the channel poles jointly.

2.6 Wideband Channel Prediction

The channel estimation/prediction problem is now reduced to a classical frequency

estimation problem, with an unknown number of Doppler frequencies closely spaced

around zero. Subspace-based methods are characterized by their ability to resolve

closely spaced sinusoids on the basis of short sample sequences. In this paper, we

consider an ESPRIT-type method to estimate the channel poles associated with D

dominant sinusoids. When estimating channel parameters with the ESPRIT algo-

rithm, the number of channel poles that can be resolved is limited by the number

of channel samples in the analysis segment and the number of frequency points

we choose from the entire wideband. However, near-optimum performance can be

achieved if D is chosen large enough [25].

Estimation of Channel Poles From (2.19), the discrete-time channel transfer

function at frequency fm can be expressed as

Hm = Z αm + ηm (2.20)
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where

Hm =




H(fm; 0)

H(fm;T )
...

H(fm; (N − 1)T )




(2.21)

Z =




1 1 · · · 1

zT
1 zT

2 · · · zT
D

...
...

...

z
(N−1)T
1 z

(N−1)T
2 · · · z

(N−1)T
D




(2.22)

αm = [αm1 αm2 · · · αmD]′ (2.23)

ηm is the noise contribution, and superscript ′ denotes the vector transpose operator.

The observation interval is [0, (N−1)T ]. Hereafter, we assume T = 1 in the analysis.

Defining Z↓ (Z↑) as the matrix Z with the top (bottom) row deleted, we can write

Z↑Υ = Z↓ (2.24)

where

Υ = diag{z1, z2, . . . , zD} (2.25)

Collecting the channel transfer function samples in the observation interval at M

frequency points within the wideband, we form the data matrix H as

H = [H0 H1 · · · HM−1] (2.26)

Hm is an L × K Hankel matrix associated with the channel transfer function at

frequency fm

Hm =




Hm(0) Hm(1) · · · Hm(K − 1)

Hm(1) Hm(2) · · · Hm(K)
...

...
...

Hm(L− 1) Hm(L) · · · Hm(N − 1)




(2.27)
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where K + L = N + 1. We need L ≥ KM to ensure that H is of full column rank.

Thus, K is chosen as

K = bN + 1
M + 1

c (2.28)

A subspace decomposition can be performed on H by singular value decomposition

(SVD) as

H = [Us Un]


 Σs 0

0 Σn





 VH

s

VH
n


 (2.29)

where Us ∈ CL×D, Σs ∈ RD×D, Vs ∈ CKM×D, and superscript H denotes Hermitian

transpose operator. The orthonormal columns in Us associated with the D largest

eigenvalues corresponding to the dominant sinusoids span the D-dimensional signal

subspace. Therefore, in the following expression

U↑
sΦ = U↓

s (2.30)

matrix Φ is similar to matrix Υ. So Φ and Υ have the same eigenvalues, which are

the channel poles. The least squares estimate of Φ is given by

Φ̂ = (U↑H
s U↑

s)
−1U↑H

s U↓
s (2.31)

The channel poles are projected onto the unit circle in accordance with the far-field

channel model.

Estimation of Complex Path Gains Based on the estimates of the channel

poles {zk}, the complex path gains αm at each frequency can be determined by

solving a set of linear equations as in (2.20). The least squares solution is given by

α̂m = (ZHZ)−1ZHHm (2.32)

Channel Prediction Once the channel poles and complex path gains are

estimated, we can predict the channel transfer function H(fm; t) at future time from
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Figure 2.6: Channel transfer function.

(2.19) for t = NT, (N + 1)T, . . .. The prediction error em(k) (k = N, N + 1, . . .)

is defined as the amplitude of the differences between predicted and actual channel

samples

em(k) = |Ĥ(fm; kT )−H(fm; kT )| (2.33)

The performance of channel prediction is evaluated by the ratio of em(k) to the

root-mean-square (RMS) value of the envelope of the channel transfer function at

frequency fm. As a measure of prediction quality, we use the prediction distance

defined in [22], for which the predicted and actual channels start to depart as this

ratio becomes more than 20%. The prediction distance is converted to units of

carrier wavelength λ in the simulation so that it is independent of the mobile speed.
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Figure 2.7: Channel impulse response.

2.7 Simulations

A wideband wireless system is simulated, in which the BS communicates with a

mobile moving at a speed of 80 km/h. The carrier frequency is fc = 2 GHz. As-

sume that the scatterers are uniformly distributed around the mobile. There are L

significant multipath signals arriving at the BS, with the weakest having an ampli-

tude no less than 20 dB lower than the amplitude of the most powerful one. The

shortest multipath being as the reference, the propagation delay lengths and the

phase offsets of the others are uniformly distributed on [0 m, 1000 m] and [0, 2π),

respectively.

Figure 2.7 illustrates the channel impulse response h(τ ; ν) in the domains of
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Figure 2.8: Channel prediction example. (— : actual channel, · · · : predicted
channel.)

delay and Doppler frequency as

h(τ ; ν) =
L∑

k=1

αkδ(ν + fk)δ(τ − τk) (2.34)

The figure shows L = 25 significant multipath components with no more than 20 dB

variation. The maximum Doppler frequency shift is limited by the mobile speed.

Performing the 2-dimensional FFT on h(τ ; ν) results in the time-varying channel

transfer function H(f ; t). Figure 2.6 illustrates the baseband channel transfer func-

tion spanning a bandwidth of 5 MHz. The channel experiences fast fading and there

are deep fades within a time frame of 10 ms.

The channel transfer function is sampled at M = 32 evenly spaced frequency

points within the 5 MHz band. An example of channel prediction is demonstrated in
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Figure 2.9: Channel prediction performance, L = 10.

Figure 2.8, which shows the amplitudes and phases of the channel transfer functions

at the fourth and twelfth frequency points. The region to the left of the vertical

line is the observation interval as the analysis segment, and the region to the right

is the prediction segment. The observation interval is [0, 3.9 ms], which is [0, 0.58λ]

in wavelength units. At each frequency, 32 channel samples in the observation

interval are used. Note that the sampling rate is higher than the Nyquist rate,

which is twice the maximum Doppler frequency. It does not benefit by sampling the

channel as densely as the data rate, because the channel variation is characterized

by the Doppler frequencies. The Doppler frequencies {fk} are limited to a few

hundred hertz, and T takes up only a few milliseconds, therefore the channel poles

{zT
k = ej2πfkT } condense near 1 in the complex plan.

There are L = 100 significant multipath components with 20 dB variation
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Figure 2.10: Channel prediction performance, L = 100.

range. The channel output SNR is fixed at 20 dB. We choose D = 12. Channel

poles with amplitude larger than 1.1 or smaller than 0.9 are discarded, since they

are usually not related to the Doppler frequencies of the channel. And the remaining

poles are projected onto the unit circle.

Figure 2.9 and Figure 2.10 make the performance comparison between the

joint-frequency channel prediction and the prediction conducted at each frequency

individually, with the channel output SNR varying from 0 to 40 dB. The observation

intervals are chosen as [0, 0.58λ], [0, 2.31λ] and [0, 4.63λ], and a fixed number of

32 samples are taken from each interval. There are L = 10 significant multipath

components simulated in Figure 2.9, and L = 100 in Figure 2.10. The number of

Monte Carlo trials is 200. Because the joint-frequency wideband channel prediction

uses more data in the observation interval to estimate the channel poles, it provides
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better prediction performance.

2.8 Conclusions

Prediction of the frequency-selective fading channel in the wideband systems has

been investigated in a fast fading environment. The simulations use a static model

with far-field scatterers and constant mobile velocity. Applying the subspace method

jointly at different frequencies within the wideband offers reliable prediction of the

channel transfer function. The proposed prediction algorithm outperforms the chan-

nel prediction over a single frequency with an observation interval of the same length.
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Chapter 3

Vector Channel Modeling and

Dynamic Power Control

3.1 Introduction

In cellular wireless CDMA communication systems, mobile users adapt to time

varying radio channels by regulating transmitted powers. The power control on

the uplink attempts to adjust the transmitted power of each mobile such that the

base station (BS) receives signals from each mobile with equal and constant nominal

received power [31]. Optimal power control algorithms aim at minimizing the power

transmitted by each mobile while maintaining required link quality.

The power control algorithms that have been developed to date assume slow

fading radio channels. The channel characteristics vary slowly over several uplink

and downlink frame periods. In TDD systems, the BS sends power control signals

to an individual mobile according to the received signal power it measures from

previous uplinks. However, when the mobile moves in the propagation environment,

such that Doppler spread and multipath scattering cause rapid fluctuation in the

received signal, the radio channel undergoes Rayleigh fading and varies drastically
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within several frame periods [1]. This poses significant error in traditional power

control, in which the mobile adjusts power based on the channel characteristics of

the previous uplinks. Under fast fading, the control signaling from the BS is not

suitable for the current uplink. Also, the constant transmitted power will not be

able to cope with the deep fades within an uplink frame period.

When an antenna array is used at the BS, downlink beamforming technique

exploits the spatial diversity of the mobiles to increase system capacity [32]. The

BS assigns beamforming weights for the transmission to a particular user, and it

combines with the vector channel to form the user-specified traffic channel (TCH).

In this chapter, we model the vector channels, and propose a new power

control scheme, such that the mobile transmits at variable power levels based on

the uplink traffic channel prediction. This control is open loop in the sense that

the mobile user does not need BS signaling for power adjustment. Operating in

TDD mode, the mobile extracts the most recent downlink channel from the re-

ceived signal, and predicts the channel for uplink transmission. The AR model is

employed for channel prediction. The mobile dynamically adjusts the transmitted

power within an uplink frame according to the channel variation, such that the fast

fading effect is compensated. Because imperfect beamforming gives rise to error of

channel prediction, in this work, the uplink channel prediction relies on both the

omni-directional access channel (ACH) and the user-specified traffic channel (TCH)

to improve accuracy.

3.2 Propagation Environment and Vector Channel Model

A BS with an antenna array, serving multiple mobile users emitting narrowband

signals is considered as in Figure 3.1. The multipaths which cause random phase

change and angle spread at the receiver are a result of the following two mechanisms.

First, the transmitted signals are scattered by objects local to the transmitter.
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Figure 3.1: Multipaths caused by local and remote scatterers

Secondly, the scattering ray bundles are reflected or diffracted by objects remote to

the transmitter. For local-scattering paths, it is reasonable to assume that the signal

energy is dominant within a small spreading angle ∆ with a uniform distribution.

The reflection or diffraction by remote objects cause significant multipath delays

and large angle spread.

Due to the motion of the mobile or the scatterers, the received signals at

the BS experience Doppler spread. The increased mobility results in fast fading in

which the channel exhibits rapid temporal variations, such that the performance of

the cellular radio system is substantially degraded. Fast-fading channels encountered

in practice exhibit Doppler spreads on the order of 100-200 Hz [33]. With carrier

frequency 2 GHz and Doppler spread 100 Hz, the range of the channel envelope

within 5 ms frame of uplink and downlink can be as large as 10 dB.

When an M-element antenna array is mounted on the BS, the channel be-

tween the BS and the mobile is modeled using the Vector Channel Impulse Response

(VCIR). Without considering local scattering,

h(t, τ) =
L−1∑

i=0

αi(t, τ)a(θi)δ(t− τi(τ)) (3.1)
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where αi, τi, a(θi) are the complex amplitude, path delay and steering vector as-

sociated with DOA (θi) of the ith multipath component. There are a total of L

multipath components. The complex amplitude can be expressed as

αi(t, τ) = ρi(τ)ej(2πfi(τ)t+Ψi(τ)) (3.2)

where ρi, fi, and Ψi are the path gain, Doppler shift and phase offset. Assume that

the parameters ρi, fi,Ψi and τi remain constant during the short period of several

TDD frames under consideration. Thus, the BS received baseband data vector from

user j is given by

x(t) = h(t, τ) ∗ u(t) + n(t)

=
L−1∑

i=0

αi(t)a(θi)u(t− τi) + n(t)

= u(t− τ0)A(j)(t) + n(t) (3.3)

where, u(t) is the baseband transmitted signal which depends on the information-

bearing symbol and the modulation waveform, n(t) is zero-mean, complex AWGN

vector. The last step of (3.3) makes the narrowband channel assumption that τi ≈
τ0. A(j)(t) =

∑L−1
i=0 αi(t)a(θi).

Consider locally scattered paths from one nominal DOA θ. The received

data vector becomes [34]

x(t) =
N−1∑

k=0

αk(t)a(θ + θ̃k)u(t− τk) + n(t)

= u(t− τ0)A
(j)
i (t) + n(t) (3.4)

where N is the total number of scattered paths within small angle spread ∆, and

θ + θ̃k is the arrival angle of the kth scattered path. The delay spread of scattered

paths are usually insignificant because of the small scattering radius. With |θ̃k| ≤ ∆,
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a first-order Taylor series expansion yields

A(j)
i =

N−1∑

k=0

αka(θ + θ̃k)

∼=
N−1∑

k=0

αk[a(θ) + θ̃kd(θ)]

= (
N−1∑

k=0

αk)a(θ) + (
N−1∑

k=0

αkθ̃k)d(θ) (3.5)

where, d(θ) = ∂a(θ)/∂θ is the gradient.

Combining the effect of local scattering with that of large-angle reflection in

(3.3) gives

x(t) =
L−1∑

i=0

[γi(t)a(θi) + ψi(t)d(θi)] u(t− τi) + n(t)

= bj(t) u(t) + n(t) (3.6)

where

bj(t) =
L−1∑

i=0

[γi(t)a(θi) + ψi(t)d(θi)]

γi(t) =
Ni−1∑

k=0

αik(t), ψi(t) =
Ni−1∑

k=0

αik(t)θ̃ik (3.7)

bj(t), the composite multiplicative channel, is called the spatial signature of the

narrowband channel for user j.

3.3 Mobile Received Signal

In TDD systems, radio channels for uplink and downlink are reciprocal. The signal

transmitted by the BS antenna array can be described as

u(t) =
D∑

d=0

wdud(t) (3.8)

36



where, wd’s are the beam-forming weight vectors. w0 = 1 (= ones(M, 1)) is for the

omni-directional access channel (ACH), whereas wd, d ∈ {1, . . . , D}, is for the traffic

channel (TCH) of each user. D is the number of mobile users. u0(t) is the common

access signal, and ud(t) is the signal for user d. Therefore the signal received by user

j is

xj(t) = bT
j (t)u(t) + nj(t) (3.9)

Suppose the signal-to-interference-and-noise-ratio (SINR) for user j is above the

satisfactory threshold, then the received signal can be further expressed as

xj(t) = bT
j (t)wjuj(t) + bT

j (t)w0u0(t)

+
∑

d6=0,d 6=j

bT
j (t)wdud(t) + nj(t)

= bT
j (t)wjuj(t) + bT

j (t) 1 u0(t) + ñj(t) (3.10)

Interference from signals for other users is absorbed into the noise component ñj .

The two signal parts in (3.10) can be separated by CDMA orthogonal codes. There-

fore, after detecting uj(t) and u0(t), the mobile user can extract the TCH as bT
j (t)wj

and the ACH as bT
j (t)1. Now the task is to predict the TCH in the following uplink

frame for the purpose of dynamic power control.

3.4 Access-Channel-Assisted Channel Prediction

The traffic channel c(t) of user j is defined as

c(t) = wT
j bj(t)

= wT
j

L−1∑

i=0

[γi(t)a(θi) + ψi(t)d(θi)]

= wT
j

L−1∑

i=0

γi(t) [a(θi) + d̃i]

= wT
j [A + D] Γ (3.11)
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where,

A = [a(θ0), . . . ,a(θL−1)], D = [d̃0, . . . , d̃L−1],

Γ = [γ0(t), . . . , γL−1(t)]T

and

d̃i =
ψi(t)
γi(t)

d(θi)

Note that wj and A are constant vector and matrix, ||D|| is of order O(∆) and

it is assumed that the derivatives exist and that they are bounded. From (3.2)

and (3.7) we see that γi’s are of harmonic forms that consist of a superposition of

complex exponentials. As a result, sharp peaks are the predominant feature of the

power spectrum of channel c(t). Therefore, the autoregressive (AR) model is most

appropriate for the channel [35]. The sharp peaks correspond to the poles near the

unit circle. The AR model is closely tied to linear prediction, and the prediction

coefficients ap
def
= [1, a1, . . . , ap]T satisfy the Yule-Walker equations

R̂cap = εpu1 (3.12)

where, R̂c is the (estimated) autocorrelation matrix of c(t), εp is the modeling error,

u1 = [1, 0, . . . , 0]T is a unit vector of length p + 1, and p is the model order. Thus,

the prediction recursion is given by

ĉ(k) = −
p∑

l=1

alc(k − l) (3.13)

In practice, forward and backward linear prediction is applied for stability [36].

Exploiting the BS antenna array, optimal beamforming weight vector wj

provides adequate signal quality for the desired mobile user while minimizing the

interference from other user signals [37]. However, if the spatial signature bj(t)

changes rapidly, the downlink beamforming could actually result in received signal

degradation. Consequently, the dedicated TCH for the mobile is sensitive to fast-

fading, and it leads to large prediction error for uplink. The ACH, on the other hand,
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Figure 3.2: Access channel and traffic channel

is a broadcast channel, e.g. the universal sync channel, with w0 = 1. Therefore, the

ACH provides relative robustness to channel perturbation and reduces sensitivity to

fast-fading (Figure 3.2). From (3.11), the TCH and the ACH can be expressed as

cT (t) = wT
j [A + D] Γ , cA(t) = wT

0 [A + D] Γ (3.14)

As discussed before, sharp peaks are the predominant feature of the power spectrums

of cT (t) and cA(t). The corresponding peaks in the TCH and the ACH spectrums

have the same locations, since w is a constant complex vector. This yields the same

corresponding poles in both AR models. As a result, (normalized) prediction coef-

ficients of the TCH and the ACH using AR models of the same order are the same.

Along with (3.12), stacking TCH and ACH samples provides an overdetermined

linear equation 
 R̃T

R̃A


ap = 0 (3.15)

where, R̃T and R̃A are p × (p + 1) autocorrelation matrices of TCH and ACH
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samples, respectively.

R̃ =




rc(1) rc(0) r∗c (1) · · · r∗c (p− 1)

rc(2) rc(1) rc(0) · · · r∗c (p− 2)
...

...
...

...

rc(p) rc(p− 1) rc(p− 2) · · · rc(0)




(3.16)

for both TCH and ACH.

Due to channel randomness,


 R̃T

R̃A


 usually has full column rank. There-

fore, (3.15) has a unique non-trivial least squares solution with ap(1) = 1.

3.5 Dynamic Uplink Power Control

Once the downlink symbols are detected, the mobile can extract its own TCH

cT (t) = wT
j bj(t) and ACH cA(t) = wT

0 bj(t) from the received signal. Channel

samples are passed through a low-pass-filter (LPF) to suppress noisy variation, and

are then used to predict the TCH of the next uplink frame. The mobile transmitted

power is adjusted according to the predicted uplink channel by the “water-filling”

scheme. The adjustment is dynamic in the sense that the transmitted power level

changes as the channel changes during uplink. This can be expressed as

PTX(t) = PBTh + PL− F (t) (3.17)

where, PTX(t) is the mobile transmitted power level in dB, PBTh is the known BS

received power threshold for this particular mobile user, PL is the large-scale path

loss which does not change during the short period of time under consideration,

F (t) is the uplink traffic channel fading function. In the fast-fading environment,

F (t) changes rapidly proportional to the envelope of the predicted uplink TCH. The

scale of F (t) is chosen in such a way that the average transmitted power of an uplink

frame is fixed.
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Figure 3.3: Downlink channel and (predicted) uplink channel.

Note that the channel sampling rate utilized for dynamic uplink power ad-

justment is much lower than the data symbol rate. Mobile user adjusts transmitted

power a few times during uplink in an effort to combat deep fades within a frame.

3.6 Simulations

A wireless CDMA system of a base station communicating with two mobile users in

the propagation environment as in Figure 3.1 is simulated. The BS has an 8-element

uniform circular antenna array, which has half wavelength radius. We consider a

typical vehicular scenario, in which the BS is located outdoors with a high antenna

(thus no scatterers local to the BS), and the mobiles move at a speed of 80 km/h.

The received signals experience both local scattering and large-angle reflec-
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Figure 3.4: Base station received signal constellation.

tion. There are L dominant multipath bundles from each mobile arriving at the

base station, with pass losses, delays and DOA’s uniformly distributed on [0 dB,

20 dB], [0, T ] and [0, 2π), respectively. T is the chip duration. The chip rate is

2.048 MHz. The integer L is uniformly distributed on [1, 6]. Each multipath bundle

consists of N = 100 local scattering paths. There is 10 dB AWGN at the receiver.

Communication is in TDD mode with 2.5 ms downlink and 2.5 ms uplink. Carrier

frequency is 2 GHz. CDMA spreading factor is 8. The prediction order is p = 12.

Assume perfect symbol detection at the BS.

Figure 3.3 illustrates the TCH of each mobile user during the time period of

a consecutive downlink and uplink. The downlink TCH is passed through a LPF

with cut-off frequency 200 Hz. The LPF output is represented by the dash line in

the downlink. The dash line in the uplink period is the predicted TCH. Figure 3.4
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shows the DQPSK constellations of BS received signals from each user, as the frame-

constant uplink transmitted power compares with the dynamic uplink power. The

performance comparison of the frame-constant uplink power control and dynamic

uplink power control is made in Figure 3.5, in which it shows the average bit-error-

rate (BER) of the received signals versus SNR at the BS. Figure 3.6 shows the

average BER as the mobile moves at different speed. Here, SNR = 10 dB. The

performance of power control based on ACH/TCH prediction is also compared with

that of the prediction only with TCH samples. Clearly, the proposed method has

the best performance over fast fading channels.
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3.7 Conclusions

We have introduced an effective uplink power control scheme for wireless TDD

systems under fast fading. The control intelligence is located at the mobile user

end. The control is open-loop, as it is based on the prediction of the uplink channel.

Prediction accuracy is improved by exploiting the antenna array technique. This

mobile power control scheme aims at compensating channel fading fluctuation within

a short period of time, usually several frame durations. It can also be combined with

distributed iterative power control algorithms for optimal system performance.
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Chapter 4

Downlink Beamforming for Fast

Rayleigh Fading Signals

4.1 Introduction

Space diversity, obtained through antenna array processing, provides an attractive

means to improve the performance of wireless communication systems [38, 39, 6].

When antenna array is equipped at the base station, the received signals in uplink

(mobile to base station) are properly weighted and combined, and the transmitted

signals in downlink (base station to mobile) are weighted on each array element be-

fore transmission, subject to a total radiated power constraint, to form beams toward

the desired users. Both uplink combining and downlink beamforming endeavor to

maximize the output signal-to-interference-plus-noise ratio (SINR) by using adap-

tive antenna array techniques, which combat the multipath fading of the desired

signal [30] and the cochannel interference (CCI) [40, 32]. In code-division multiple

access (CDMA) systems, the CCI is effectively reduced by the coding gain. Consid-

ering the signal after despreading as the signal of a single user case for the desired

mobile, we herein focus our beamforming effort on combating the Rayleigh fading
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experienced by each mobile caused by multipath propagation.

The increased mobility results in fast Rayleigh fading, in which the channel

exhibits rapid temporal variations. The downlink beamforming algorithms that have

been developed to date adapt only to slowly varying components in the channel and

do not track fast Rayleigh fading which can vary significantly within a transmission

data frame. This problem is mitigated by the adaptive downlink beamforming

approach proposed in this chapter, in which the beamforming weights are adjusted

multiple times within a transmission frame based on downlink channel prediction.

The linear predictability of mobile channel is reported in [23] and [21], in

which the channel is modeled as a wide-sense stationary autoregressive (AR) process.

Using the AR model, the vector channel modeling and prediction are introduced

in [41], where an antenna array is implemented at the base station. The prediction

of the vector channel benefits from the fact that the channel experienced by each

array element can be modeled using the same AR model.

In this chapter, we exploit the prediction of vector channels for adaptive

downlink beamforming to combat fast Rayleigh fading in the wireless link. The

prediction order is estimated based on the information theoretic criteria for model

order selection introduced by Akaike (AIC) [42] and by Schwartz and Rissanen

(MDL) [43, 44]. When predicting the channel for the purpose of beamforming,

we effectively decimate the observation interval of channel samples to improve the

prediction performance. The beamforming rate, that is, the frequency of adjusting

the antenna weights within a transmission frame, is closely related to the decimation

in the channel prediction. The selection of the beamforming rate is discussed with

its effect on the channel prediction performance, the receive bit error probability

and the computational complexity of the algorithm.

Another issue that complicates downlink beamforming is the absence of ac-

curate knowledge of the current downlink channels at the base station, especially in
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frequency-division duplex (FDD) systems. In FDD systems, the instantaneous chan-

nels of uplink and downlink are uncorrelated when the channel coherence bandwidth

is smaller than the carrier frequency separation [45]. Because of the uncorrelated

fading in uplink and downlink, and the frequency dependency of array response,

the direct use of the uplink weights for downlink beamforming is not sufficient.

The existing approaches for FDD systems include the adaptive beamforming based

on the mobile probing-feedback [46], and the adaptive beamforming based on the

estimation of the direction of arrivals (DOA) [47]. However, the mobile feedback

method requires additional bandwidth for control signaling, and introduces prop-

agation delay, which can be intolerable under fast fading. And the DOA method

can be impaired by the estimation resolution, which in many cases is limited by the

dimension of the antenna array.

To circumvent this problem, in this chapter we propose another adaptive

downlink beamforming approach that exploits the uplink channel subspace. It can

realize transmit diversity gain without requiring knowledge of the current downlink

channel. In [48, 49, 50, 51], the concept of channel subspace is applied to downlink

beamforming to reduce the CCI, where the channel subspace is characterized by the

channel covariance matrix. However, these algorithms are not able to cope with the

fast Rayleigh fading of the desired signals. In our approach, the downlink beam-

forming weights are chosen according to the orthonormal basis of the uplink channel

subspace. As the channel varies, the channel vector is confined to the channel sub-

space. In contrast to the time-varying channel vector, the channel subspace spanned

by the array responses has a stable structure. Furthermore, the distance between

the uplink channel subspace and the downlink channel subspace is negligible even

with large uplink and downlink carrier separation. This makes the proposed beam-

forming technique applicable in a practical FDD system. The base station transmits

the signal to a particular mobile through multiple code channels, each of the coded

47



signals being weighted by an orthonormal basis vector of the effective uplink channel

subspace. The mobile combines the received signals of all the code channels, which

results in the desired signal with its power preserved under fast fading. This is

accomplished at the cost of the code-channel resource and by modifying the mobile

receiving.

This chapter is organized as follows. In Section 4.2, we present the system

model, together with the uplink space-time processing at the base station receiver.

We propose the predictive downlink beamforming algorithm in Section 4.3, and dis-

cuss its implementation in time-division duplex (TDD) and frequency-division du-

plex (FDD) CDMA systems. In Section 4.4, the prediction order is estimated using

information theoretic criteria for model order selection. In Section 4.5, we give the

performance analysis of channel prediction for beamforming and system performance

analysis. In Section 4.6, we propose the subspace-based downlink beamforming al-

gorithm, and discuss its implementation in TDD and FDD systems. Section 4.7

gives the results of computer simulations, which are conducted through an electro-

magnetic ray tracer that uses an urban propagation model of downtown Austin,

Texas. Finally, conclusions are drawn in Section 4.8.

4.2 System Model and Uplink Space-Time Processing

We consider a cell in which K mobile users, each with a single antenna element,

communicate simultaneously with a base station with an M -element antenna array.

The baseband signal received at the base station can be expressed in a vector form

as

x(t) =
K∑

k=1

Lk∑

i=1

a(u)
k,i (t)

√
p
(u)
k s

(u)
k (t− τk,i) + n(t) (4.1)
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where superscript (u) denotes uplink, and

Lk total number of resolvable paths from mobile k;

ak,i(t) time-varying channel vector of the ith path from mobile k;

τk,i path delay of the ith path from mobile k;

pk transmit power of mobile k;

sk(t) transmitted signal of mobile k;

n(t) receiver background noise vector, each element of which is independent

additive white Gaussian noise (AWGN) with one-sided spectrum density

N0.

A path can be resolved by a RAKE receiver, if its temporal separation to other

paths is larger than the chip duration Tc. Each of the resolvable paths is itself a

cluster of temporally unresolvable multipath components, which may arrive at the

receiver from different directions. Suppose there are Ls unresolvable subpaths which

contribute significantly to the ith path from mobile k, the channel vector ak,i(t) can

be written as

a(t) =
Ls∑

j=1

αj(t)v(θj) (4.2)

Here we omit the subscripts k and i. For an M -element circular array with radius R,

the array response v(θj) associated with the direction of arrival (DOA) θj is given

by

v(θj) = [ej2πRfc cos(θj)/C , ej2πRfc cos(θj+2π/M)/C , · · · , ej2πRfc cos(θj+2π(M−1)/M)/C ]T

(4.3)

where fc is the carrier frequency. αj(t) is the complex amplitude of the jth subpath,

which can be expressed as

αj(t) = ρje
j2π(fjt−(fc+fj)τj) (4.4)

where ρj and fj are the complex path loss and the Doppler frequency shift of the jth

subpath, respectively. The Doppler frequency is given by fj = fc
v
c cos(ψj), where v
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is the relative speed of the mobile, c is the speed of light, and ψj is the angle between

the incident wave of the jth subpath at the mobile and the mobile moving direction.

The received signals experience Doppler frequency spread due to the motion of the

mobile or the scatterers. We consider only Rayleigh fading but no path loss or

shadowing, that is to assume the DOA θj , the path loss ρj , the path delay τj and

the Doppler frequency fj remain constant over a period of several data frames.

The transmitted signal sk(t) depends on the information-bearing bit stream

{bk(n)} and the modulation waveform gk(t) as

sk(t) =
∑

n

bk(n)gk(t− nTs) (4.5)

where Ts is the symbol duration. For CDMA systems, the modulation waveform is

of the form

gk(t) =
N−1∑

n=0

ck(n)p(t− nTc) (4.6)

where {ck(0), ck(1), . . . , ck(N−1)} is the binary (±1) spreading code, p(t) is the chip

pulse-shaping function. Tc is the chip duration, N is the code length, and we have

Ts = NTc. Suppose the RAKE receiver has a finger aligned with each resolvable

path, and a matched filter, which is given by g∗k(−t), is present at each finger. With

the assumption of white Gaussian noise, the output of a matched filter is a sufficient

statistic for the estimation of the transmitted signal [45]. The output of the matched

filter for the ith path from mobile k sampled at the symbol rate is

yk,i(n) =
∫ nTs+τk,i

(n−1)Ts+τk,i

gk(t− nTs − τk,i)x(t)dt

=
√

Gpkak,i(n)bk(n) + i(n) + ñ(n) (4.7)

where G is the processing gain. i(n) is the undesired component due to multiple

access interference (MAI) and self interference, and ñ(n) is the noise component:

i(n) =
∑

k 6=l

∑

or i6=j

√
plal,j(n)

∑
m

bl(m)
∫

gk(t− nTs − τk,i)gl(t−mTs − τl,j)dt

ñ(n) =
∫

gk(t− nTs − τk,i)n(t)dt
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We assume that the modulation waveforms of the interfering users or with differ-

ent delays appear as mutually uncorrelated noise. Therefore, the desired signal is

stronger than each of the interferers at the output of the matched filter. Receivers

employing antenna arrays adjust their beam patterns by assigning a weight vector

wk, such that the array output is weighted and added to maximize the signal-to-

interference-and-noise-ratio (SINR). Due to the fast time-varying property of the

channel vector a(n), the weight vector needs to be adjusted several times during an

uplink frame to compensate fading. We assume the channel is piecewise stationary,

that is, the channel vector is constant during each beamforming group, which is

defined as a time span of tens to hundreds of symbols to calculate each weight. The

average output power of the symbols of the lth beamforming group is

Pl = E{wH
k,iyk,i(n)yH

k,i(n)wk,i}

= wH
k,iE{yk,i(n)yH

k,i(n)}wk,i

= wH
k,iRyy(l)wk,i (4.8)

where Ryy(l) is the spatial covariance matrix of the matched filter output, which

can be written as

Ryy(l) = Gpkak,i(l)aH
k,i(l) + Rin(l) (4.9)

with Rin(l) being the spatial covariance matrix of total interference plus noise. The

weight vector which maximizes the SINR

Γl =
GpkwH

k,iak,i(l)aH
k,i(l)wk,i

wH
k,iRin(l)wk,i

(4.10)

is given by the optimum Wiener solution as [52]

wk,i = ζR−1
in (l)ak,i(l) (4.11)

where ζ is an arbitrary constant that does not change the value of the SINR obtained

after combining. Assuming that the interference is spatially white, we can show that
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Rin is proportional to an identity matrix, therefore a suboptimal solution for the

weight vector is

wk,i = ζak,i(l) (4.12)

The optimum combining and suboptimum combining have similar performance as

shown in [53]. In order to compensate fading, we maintain constant received signal

strength by forming the suboptimal weight vector as

wk,i = ξβ−1
k,i (l)ãk,i(l) (4.13)

where ãk,i(l) is the normalized channel vector, and βk,i(l) = ||ak,i(l)||. ξ is a constant

that takes into account the total power constraint. The average signal power of the

lth beamforming group becomes independent of l as

Ps,l = GpkwH
k,iak,i(l)aH

k,i(l)wk,i = Gpkξ
2 (4.14)

Given that the desired signal is sufficiently stronger than interference and noise

after matched filtering, ãk,i(l) and βk,i(l) are obtained as the principal unit norm

eigenvector and its corresponding eigenvalue of Ryy(l).

Applying spatial diversity combining and RAKE reception is indeed a space-

time filtering process. We adopt the scheme of performing beamforming before

RAKE combining on the received data for better performance [54]. However in

doing so, a weight vector needs to be assigned for each resolvable path, compared

to only one weight vector for all paths from a particular mobile when beamforming

is performed after RAKE combining.

4.3 Predictive Downlink Beamforming

In uplink, both the beamformer and the RAKE receiver are implemented in the base

station. In downlink, the beamformer and the RAKE receiver are implemented in

the base station and the mobile, respectively. The delay spread does not change
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from uplink to downlink. However, the vector channel representing each resolvable

path varies drastically over a duplex time under fast Rayleigh fading. A duplex time

is the time gap between two consecutive transmission frames in the TDD systems.

In the FDD systems, the feedback of the downlink channel state information has a

time delay for the current base station transmission, which is also refer to as the

duplex time in this context. Furthermore, the vector channel exhibits deep fades

during each transmission. Therefore, the prediction of future downlink and the fine

adjustment of beamforming weights within a transmission frame are crucial to guar-

antee receive performance.

Downlink Beamforming for TDD In TDD systems with the same carrier

frequency, radio channels for uplink and downlink are reciprocal. The uplink chan-

nel vector ak,i for the ith path from mobile k is extracted from the received data at

the base station and can be used to predict the future downlink. Similar to (4.13),

the downlink beamforming weights are formed according to the predicted downlink

channel, which varies during the transmission frame, but is assumed piecewise sta-

tionary for each beamforming group. Hereafter we omit the subscripts k and i with

the understanding that we are dealing with the ith path of mobile k.

Recall that the output of the matched filter at the base station can be ex-

pressed as in (4.7). Suppose perfect detection of the symbol bit b(n). The base

station can extract the uplink channel vector samples from y(n) as

c(n) = b∗(n)y(n)

=
√

Gpka(n) + η(n)

=
√

Gpk

∑

j

αj(n)v(θj) + η(n) (4.15)

where η(n) = b∗(n)(i(n) + ñ(n)) is the interference plus noise component. Assume

that the mobile transmit power is fixed over a few duplex time intervals. Note that
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v(θj) is a constant vector, and the Rayleigh fading effect is due to the variation of

each complex amplitude αj(n) caused by Doppler frequency shifts. As αj(n) can

be expressed as in (4.4), it is clear that c(n) is of harmonic form that consists of

a superposition of complex exponentials in noise. As a result, sharp peaks are the

predominant feature of the power spectrum of the channel samples at each array

element. This justifies an all-pole model for the channel. The channel vector is

modeled as a pth order Gaussian autoregressive (AR(p)) process

c(n) = −
p∑

l=1

qlc(n− l) + e(n) (4.16)

where {e(n)} is a white Gaussian sequence. The locations of the sharp peaks cor-

respond to the poles near the unit circle as zj = ej2πfjTs , which are determined by

the Doppler frequency shifts of the p dominant subpaths. The AR coefficients are

the same for channel samples of all array elements, because the arriving signals,

though combined with different phases at different array elements, experience the

same Doppler frequency shifts, which yield the same poles in the AR models.

As shown in (4.13), the suboptimal weight vectors are derived from the chan-

nel vectors of the desired mobile. Therefore, the prediction coefficients can be ap-

plied directly onto the uplink weights to generate a series of downlink beamforming

weights, with a simple modification on the scale of the norms. Accordingly, the up-

link channel samples forming the observation interval for prediction are decimated

to the beamforming rate. The decimator consists of a downsampler preceded by a

low-pass filter (LPF), which functions as an anti-aliasing filter [36]. We bandlimit

the channel samples to a frequency band which includes the expected Doppler fre-

quency shifts and then downsample the resulting data to the beamforming rate. The

beamforming rate is usually higher than twice the maximum Doppler frequency. The

downsampled version of the Gaussian AR(p) process can be written as

c(n) = −
p∑

l=1

qlc(n− lLb) + e(n) (4.17)
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where Lb is the length of a beamforming group. A simpler linear structure is a

tapped-delay-line configuration, which makes one-step prediction via an FIR filter

as

ĉ(n) = −
p∑

l=1

qlc(n− lLb) (4.18)

The coefficients qp = [1, q1, . . . , qp]T are determined as the least square solution to

the linear equations

Cqp = 0 (4.19)

where C is a matrix of channel samples after decimation, assuming that

{c(0), c(1), . . . , c(N − 1)} is observed

C =




c(N − 1) c(N − 1− Lb) · · · c(N − 1− pLb)

c(N − 2) c(N − 2− Lb) · · · c(N − 2− pLb)
...

...
...

c(pLb) c((p− 1)Lb) · · · c(0)

c∗(0) c∗(Lb) · · · c∗(pLb)
...

...
...

c∗(N − 1− pLb) c∗(N − 1− (p− 1)Lb) · · · c∗(N − 1)




(4.20)

The forward and backward linear prediction is applied to ensure the Toeplitz struc-

ture of the normal equations along with the guaranteed stability of the AR model.

The AR coefficients qp varies slowly and can be easily adapted using, for

example, the least-mean squares (LMS) algorithm [35]

qp(n) = qp(n− Lb) + µCH(n)(c(n)− ĉ(n)) (4.21)

where qp(n) denotes the prediction coefficients to be applied at time n, µ is a tuning

constant, and C(n) = [c(n− Lb), . . . , c(n− pLb)]T .

Downlink Beamforming for FDD In FDD systems, radio channels for uplink
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and downlink have independent fading. The instantaneous channels of uplink and

downlink are uncorrelated when the channel coherence bandwidth is smaller than

the carrier frequency separation [45]. When mobile probing-feedback is applied in

FDD systems [46], we modify the AR coefficients obtained from the uplink channel

samples, and apply them to the feedbacks of previous downlink for prediction. The

downlink beamforming weights can therefore be found, provided the probing rate

is higher than or equal to the beamforming rate. The prediction coefficients can be

obtained from the channel poles by Newton’s relations as

ql = (−1)l
l∑

zizj · · · zk︸ ︷︷ ︸
l

l = 1, . . . , p (4.22)

where zi, zj , . . . , zk are distinct poles with zi = ej2πfiTb . fi is the Doppler frequency,

1/Tb is the downlink channel probing rate. Assuming the probing rate is equal to the

beamforming rate, we have Tb = TsLb. Fast fading channels encountered in practice

exhibit Doppler spreads on the order of 100 − 200 hertz [33]. With Tb ∼ 1 × 10−3

second, the poles {zi} have no 2π-phase ambiguity on the complex plan. Therefore

the uplink channel poles can be transformed to downlink channel poles by modifying

the phase components as

Φ(z(d)
i ) =

f
(d)
c

f
(u)
c

Φ(z(u)
i ) (4.23)

In most FDD implementations, f
(d)
c

f
(u)
c

≈ 1. As we will see in the simulations, it

is credible to apply the prediction coefficients of uplink directly to the downlink

without any modification.
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4.4 Model Order Selection

We rewrite the Gaussian AR(p) process in a downsampled version as follows, as-

suming that {c(0), c(1), . . . , c(N − 1)} is observed,

c(n) +
p∑

l=1

qlc(n− lLb) = e(n), n = pLb, . . . , N − 1. (4.24)

where the model order p satisfies p ≤ (N−1)/Lb. e(n) is drawn i.i.d. by the complex

multivariate Gaussian distribution of zero mean and covariance matrix Ce = σ2
εI.

Suppose that the observed channel vectors are of one uplink frame, which is evenly

divided into g beamforming groups as N = gLb. The model order p is selected,

therefore in the range 0 < p ≤ g− 1, to minimize the total squared prediction error

as

p̂ = arg min
0<p≤(g−1),q1,...,qp

N−1∑

n=pLb

||e(n)||2 (4.25)

Let q1, . . . , qp, σ
2
ε comprise the AR(p) parameter vector Θ(p). Regarding the pre-

diction errors as spatially white, independent vectors with zero mean, the joint

probability density is given by

f(e(pLb), . . . , e(N − 1);Θ(p)) =
N−1∏

i=pLb

1
(πσ2

ε)M
e
− 1

σ2
ε
eH(i)e(i)

(4.26)

where M , the dimension of the vector, is the number of antenna elements at the

base station. The optimum model order p̂ is found by selecting the model which

minimize the Akaike information criterion (AIC) [42]

AIC(p) = −2 ln f(e(pLb), . . . , e(N − 1); Θ̂(p)) + 2k (4.27)

or the minimum description length criterion (MDL) [44, 55]

MDL(p) = − ln f(e(pLb), . . . , e(N − 1); Θ̂(p)) +
1
2
k ln(N − pLb) (4.28)

where Θ̂(p) is the maximum likelihood (ML) estimate of the parameter vector Θ(p),

and k is the degree of freedom in Θ(p). When e(n) is considered Gaussian, the ML
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estimates are exactly the MMSE estimates given by the Yule-Walker equations

q̂ = −R−1r0

σ̂2
ε = r00 − rH

0 R−1r0 (4.29)

where

q̂ = [q̂1, . . . , q̂p]T , r0 = [r10, . . . , rp0]T , R =




r11 r12 · · · r1p

r21 r22 · · · r2p

...
...

...

rp1 rp2 · · · rpp




and

rkl =
1

M(N − pLb)

N−1∑

i=pLb

cH(i− kLb)c(i− lLb)

Substituting the ML estimates in the log-likelihood function, and recalling that the

prediction coefficients are complex and the prediction error variance is real, which

follows that Θ(p) has 2p + 1 degrees of freedom, we obtain (0 < p ≤ g − 1)

AIC(p) = 2M(N − pLb)(ln(π(r00 − rH
0 R−1r0)) + 1) + 2(2p + 1) (4.30)

MDL(p) = M(N − pLb)(ln(π(r00 − rH
0 R−1r0)) + 1) +

2p + 1
2

ln(N − pLb)

(4.31)

For another approach of model order selection, recall that the channel vectors

can be expressed as

c(n) =
√

Gpk

p∑

i=1

v(θi)βie
j2πfinTs + η(n) (4.32)

where the model order p is interpreted as the number of dominant multipaths with

Doppler frequencies f1, f2, . . . , fp. We write the channel sample matrix of the jth
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antenna as

Cj =




cj(0) cj(K) · · · cj(bLb−1
K cK)

cj(Lb) cj(Lb + K) · · · cj(Lb + bLb−1
K cK)

...
...

...

cj((g − 1)Lb) cj((g − 1)Lb + K) · · · cj((g − 1)Lb + bLb−1
K cK)




(4.33)

where the downsampling factor Lb makes the channel poles {ej2πfiLbTs} distinguish-

able on the complex plan, and the leaping factor K is chosen large enough such that

the columns of Cj can be regarded as statistically independent complex Gaussian

random vectors. The channel sample covariance matrix is defined by

R̂c =
1

MN ′

M∑

j=1

CjCH
j (4.34)

where N ′ = bLb−1
K c+ 1. Based on the eigenvalues of the channel sample covariance

matrix, the model order can be estimated as similar to [56, 57].

4.5 Performance Analysis

Prediction Performance The relative amplitude change and the relative angle

change of the channel vector c(n) at time n referring to c(n0) at time n0 are defined

as [41]

A(c(n), c(n0)) = 20 log10

||c(n)||
||c(n0)|| (4.35)

cos( ̂c(n), c(n0)) =
cH(n0)c(n)

||c(n0)|| · ||c(n)|| (4.36)

We measure the time-variation of the vector channel as the amplitude change and

the angle change of the current channel vector from the one at the beginning of

the transmission frame. The relative amplitude change is usually small, because

it is quite unlikely that all vector components vanish simultaneously. However,
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the relative angle change of channel vectors can be drastic within a transmission

frame. With a range of [0, 1], the absolute value of the relative angle approaches

0 quickly in fast Rayleigh fading, which means then the channel vector becomes

almost orthogonal to the one at the beginning of the frame.

Let c(n) and ĉ(n) denote the exact and the predicted channel vectors at

downlink time n, respectively, we define the normalized root mean square error

(RMSE) of the prediction of the channel as

RMSE(n) =

√
E{||ĉ(n)− c(n)||2}√

E{||c(n)||2} (4.37)

When the application of vector channel prediction is in beamforming to combat

fast Rayleigh fading, both the relative amplitude and the relative angle between the

exact and the predicted channel vectors should be incorporated in the evaluation of

the prediction quality. We define the ratio γ(n) as

γ(n) =
||Pĉ(n)c(n)||
||ĉ(n)|| (4.38)

where Pĉ(n) denotes the projection onto the subspace spanned by ĉ(n). From (4.13),

(4.14) and (4.15), we know that the received signal power is proportional to γ2(n)

as

Ps,l ∝ γ2(l) =
∣∣∣∣
ĉH(l)c(l)
||ĉ(l)||2

∣∣∣∣
2

(4.39)

where l is the index of the beamforming group. We define the mean fluctuation of

the received signal power in decibel as

κl = E{|20 log10 γ(l)|} (4.40)

Suppose one sets the tolerance level of the received signal power fluctuation to κ dB.

Then it is valid to indicate the prediction length, which is defined as the distance

in wavelength from the last observed channel vector when γ(n) starts to exceed the

range [10−κ/20, 10κ/20].
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In the predictive downlink beamforming scheme, the N -symbol downlink

frame is segmented evenly into g consecutive beamforming groups, each with Lb

symbols. The prediction sampling rate is equal to the beamforming rate, which

is determined by the speed of the mobile, that is, how rapidly the vector channel

varies. In practice, the beamforming rate is much higher than twice the maximum

Doppler frequency. For a fixed model order, increasing the beamforming rate will

generally shorten the prediction length at low SNR . Besides the prediction length,

there are other performance issues related to the beamforming rate, such as receive

bit error probability and computational complexity of the algorithm.

Bit Error Probability on a Rayleigh Fading Channel with AWGN Sup-

pose differential QPSK modulation is implemented in the system. For fading chan-

nels, the carrier phase changes rapidly when the channel exhibits a deep fade. This

leads to an error floor that increases with the Doppler frequency. The bit error

probability for DQPSK with Gray coding can be expressed as [45]

Pb(γb) = Q(a, b)− 1
2
e−

1
2
(a2+b2)I0(ab) (4.41)

where Q(a, b) is the Marcum Q function, I0(x) is the modified Bessel function of

order zero, and

a =

√
2γb

(
1− 1√

2

)
(4.42)

b =

√
2γb

(
1 +

1√
2

)
(4.43)

γb is the received bit-energy-to-noise ratio

γb =
|α|2Eb

N0
=

Eb

N0
wHaaHw (4.44)

where Eb is the bit energy, N0 is the variance of the Gaussian noise along the symbol

vector, and α = wHa is defined as the traffic channel of the particular mobile. The
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code-processing gain is not included in the derivation. If the communication is over

a Rayleigh fading channel without beamforming, |α| is a Rayleigh random variable,

and the probability density function (PDF) of γb is

pγb
=

1
γ̄b

e
− x

γ̄b (4.45)

where γ̄b is the average received bit-energy-to-noise ratio. Assuming that the g

predicted weight vectors perfectly compensate the channel fading at the middle of

each beamforming group, i.e.

wH(l)a(lLb − Lb

2
) = 1, l = 1, . . . , g. (4.46)

we have

γb(τ)|a(n0) =
Eb

N0
· a

H(n0)a(n0 + τ)aH(n0 + τ)a(n0)
||a(n0)||4 (4.47)

where n0 indicates the middle point of a beamforming group. If the channel is

Rayleigh faded, the elements of |a(n0)| are independent Rayleigh random variables

of the same mean. Suppose the PDF of γb(τ) for a fixed τ is pγb(τ). Since τ can be

chosen from [−Lb
2 , Lb

2 − 1] with equal probability, γb has the PDF as

pγb
=

1
Lb

Lb
2
−1∑

τ=−Lb
2

pγb(τ) (4.48)

Finally, the average probability of bit error is given by

Pb =
∫ ∞

0
Pb(x)pγb

(x)dx (4.49)

Without the piecewise stationary assumption for the channel, increasing the beam-

forming rate will likely reduce the bit-error-rate (BER) given perfect channel predic-

tion. However at low SNR, this reduction of BER is shadowed by the degradation

of prediction performance at high beamforming rate, especially for FDD systems

without modification of the prediction coefficients as we will see in the simulations.
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Algorithm Complexity When calculating the prediction coefficients of the

complex AR(p) model, the increase of the computational complexity from an imple-

mentation using g1 beamforming groups to another using g2 beamforming groups

is

∆(g1, g2) = 8MN(2p3 + p2)
(

1
g1
− 1

g2

)
. (4.50)

where M is the channel vector dimension, and N is the length of the observation

interval. The two implementations have the same estimated model order p satisfying

p+1 ≤ g1 < g2. On top of the low-complexity property of the AR model, this shows

that, for relatively large number of beamforming groups in a frame, the increase

in segmentations causes modest increase in the computational complexity of the

prediction algorithm. However, frequent adjustment of the beamforming weights

adds burden to the system hardware.

4.6 Subspace-Based Downlink Beamforming

Recall that there are two problems in the aforementioned conventional beamforming

approach for signals over fast Rayleigh fading channels. First, the fast variation of

the channel vector a(n) causes deep fades within an uplink frame or a downlink

frame, which can not be compensated by a combining weight fixed over the frame.

Secondly, the beamforming weights obtained during uplink may not function for

downlink transmission, because the channel vector a(n) changes over duplex time.

These problems have been successfully solved by the predictive downlink beamform-

ing algorithm. However, radio channels for FDD uplink and downlink have indepen-

dent fading. The beamforming weights obtained using received data through uplink

can not be applied directly to downlink in FDD systems.

In order to combat fast Rayleigh fading, we construct the downlink beam-

forming weights using the uplink data, and transmit the weighted signal through
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Figure 4.1: Uplink and downlink channel subspaces.

separable communication pipes. The combined signal power at the mobile is pre-

served despite the channel fades within the downlink frame. This beamforming

approach is directly applicable in both TDD and FDD systems.

Downlink Beamforming for TDD The uplink channel vector and the down-

link channel vector, as expressed in (4.2), are the linear combinations of the array

responses {v(u)(θi)} and {v(d)(θi)}, respectively. Therefore,

a(u)(t) ∈ A(u) = span{v(u)(θ1),v(u)(θ2), . . . ,v(u)(θLs)}

a(d)(t) ∈ A(d) = span{v(d)(θ1),v(d)(θ2), . . . ,v(d)(θLs)} (4.51)

where Ls is the total number of unresolvable multipaths in the link. A(u) and A(d)

are defined as the uplink channel subspace and the downlink channel subspace,

respectively. Assuming L(< Ls) multipaths have prominent amplitudes, and the

array responses {v(θi)} of these dominant multipaths are independent, we define L

as the effective rank of A(u) and A(d). Because the DOAs are large-scale parameters
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of the time-varying channel, the array responses {v(θi)}, which are a basis of the

channel subspace, change slowly compared to the channel fading rate. Therefore it

is credible to assume that the channel subspaces are fixed over the time period of

consideration. As the channel vector a(t) changes due to the variation of the complex

amplitudes {αi(t)}, it is confined in the channel subspace as shown in Figure 4.1.

In TDD systems with the same carrier frequency for both uplink and downlink, the

array responses in both links are the same, and the uplink and downlink channel

subspaces are identical. In Figure 4.1, the uplink channel subspace A(u) and the

downlink channel subspace A(d) should coincide for TDD systems.

As in (4.7), the uplink signal as the output of the matched filter at the base

station can be expressed as

y(n) =
√

Gpka(n)b(n) + η(n) =
√

Gpkb(n)
∑

i

αi(n)v(θi) + η(n) (4.52)

where η(n) is the interference plus noise component. v(θj) is assumed constant

following previous discussion, and the mobile transmitting power pk is assumed

fixed over an uplink frame. The channel Rayleigh fading is caused by the Doppler

effect of each complex amplitude αi(n). Suppose the amplitudes of the path losses

{|ρi|} do not change over several frame periods, the spatial sample-covariance matrix

of the uplink signal can be obtained by

Ryy =
1
N

N∑

n=1

y(n)yH(n) = GpkVPVH + Rin (4.53)

where

V = [v(θ1) · · · v(θL)], P = diag{|ρ1|2, . . . , |ρL|2}

and Rin includes the noise component and small cross-correlation between multi-

paths. The L principle eigenvectors of Ryy, corresponding to the L largest eigenval-

ues, form an orthonormal basis {ei, i = 1, . . . , L} of the effective channel subspace.

The effective rank L can be determined subjectively as the number of dominant
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eigenvalues of Ryy, provided that L < M . Or, it can be determined based on the

application of the information theoretic criteria for model selection such as the one

introduced in [56]. In TDD systems, the basis {ei} obtained from uplink signal is

an orthonormal basis of the effective downlink subspace, so the downlink channel

vector a(d)(t) approximates a linear combination as

a(d)(t) ≈
L∑

i=1

eH
i a(d)(t)ei =

L∑

i=1

βi(t)ei (4.54)

with

||a(d)(t)||2 =
L∑

i=1

|βi(t)|2. (4.55)

The base station uses L code channels to transmit the downlink signal to

mobile k, and assigns the orthonormal basis vector as the antenna weight for each

copy of the signal. The total transmitted signal can be written as

s(t) =
L∑

i=1

eH
i si(t) (4.56)

where

si(t) =
∑

n

bk(n)gi(t− nTs)

Therefore, the signal received by the mobile is

x(t) = s(t)a(d)(t) + n(t) =
L∑

i=1

eH
i a(d)(t)si(t) + n(t) (4.57)

By CDMA despreading, the mobile can divide the received signal into L copies

which are transmitted using L code channels as

xi(n) = eH
i a(d)(n)bk(n) + η(n) = βi(n)bk(n) + η(n), i = 1, . . . , L (4.58)

The received power of each signal copy fluctuates within a downlink frame due to

fast Rayleigh fading, whereas, the total signal power in the channel subspace remains
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almost constant. One can combine separated signal copies after phase compensation,

for example, using the differential phase shift keying (DPSK) modulation scheme as

x̂(n) =
L∑

i=1

x∗i (n− 1)xi(n) =
L∑

i=1

|βi(n)|2b∗k(n− 1)bk(n) + w(n)

=
L∑

i=1

|βi(n)|2dk(n) + w(n) = ||a(d)(n)||2dk(n) + w(n) (4.59)

where {dk(n)} are the original bits, {bk(n)} are the differentially encoded bits. The

downlink channel vector is assumed to be fixed over a symbol period, such that

βi(n) = βi(n − 1). w(n) is the interference plus noise component. The original

symbol bit dk(n) is detected from x̂(n). Notice that

||a(d)(n)||2 = a(d)H(n)a(d)(n)

=
∑

p

∑
q

α∗p(n)αq(n)vH(θp)v(θq)

=
∑
p,q

βp,qe
j2π(fq−fp)nTs

= M
L∑

p=1

|ρp|2 + 2<e{
∑
p<q

βp,qe
j2π(fq−fp)nTs} (4.60)

where βp,q = ρ∗pρqvH
p vqe

j2π(fpτp−fqτq+fc(τp−τq)). |vH
p vq| < ||vp||2 = M when p 6= q.

||a(d)(n)||2 has a large positive term as in (4.60), and the fading is greatly ameliorated

because it is quite unlikely that all vector components will vanish simultaneously.

One observation is that when the number of dominant multipaths L is 1 or 2, there

is no fading in ||a(d)(n)||2.
For a spatially white channel, ||a(d)(n)||2 has a χ2

M distribution. The channel

amplitude ||a(d)(n)|| varies slowly compared to the angle of the channel vector. The

relative angle of two channel vectors at symbol time m and n is defined as

cos( ̂a(m),a(n)) =
aH(n)a(m)

||a(n)|| · ||a(m)|| (4.61)

For fast Rayleigh fading channels, the relative angle changes rapidly when |m − n|
increases from 0 to the number of symbols of a data frame. With a range of [0, 1],

67



the absolute value of the relative angle has a high probability to approach 0, which

means then the two channel vectors are almost orthogonal to each other. The deep

fades within a data frame attribute to the rapid change in the channel vector an-

gle, and can not be compensated by the conventional beamforming. The proposed

beamforming algorithm effectively eliminates the factor of angle change in the fad-

ing of the vector channel, and the combined signal is scaled by the more tractable

amplitude of the vector channel.

Downlink Beamforming for FDD In FDD systems, the base station as-

signs the L orthonormal basis vectors of the effective uplink channel subspace as the

downlink beamforming weights. Therefore, βi(n) = eH
i a(d)(n) is the projection of

the downlink channel vector onto the basis vector ei of the effective uplink channel

subspace. Similar to (4.59), the combined signal at the mobile reception is

x̂(n) =
L∑

i=1

|βi(n)|2dk(n) + w(n) = ||P (u)a(d)(n)||2dk(n) + w(n) (4.62)

where P (u) ∈ CM×M is the orthogonal projection onto the effective uplink subspace

A(u).

Although the instantaneous channels of uplink and downlink are uncorre-

lated when the channel coherence bandwidth is smaller than the carrier frequency

separation [45], the DOAs are the same in uplink and downlink, and the distance be-

tween the uplink channel subspace and downlink channel subspace is negligible in a

practical FDD system. As shown in Figure 4.1, the downlink channel vector a(d)(n)

almost lies in the uplink channel subspace A(u), with ||P (u)a(d)(n)|| ≈ ||a(d)(n)||.
(See Appendix A).
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Figure 4.2: A wireless CDMA system which consists of a base station and four mo-
biles in the urban environment (CAD model) of downtown Austin, Texas. (Mobile
4 shown here is behind the building on 8th Street.)

4.7 Simulations

Simulations were conducted through an electromagnetic ray tracer FASANT [58, 59].

It was a deterministic ray tracing technique based on the geometric optics and the

uniform theory of diffraction. (See Appendix B). We used the computer-aided design

(CAD) model of downtown Austin, Texas (Figure 4.2) as the geometry input for the

simulator. The material properties of the CAD model were: relative permittivity

ε = 9.0, relative permeability µ = 1.0, conductivity σ = 0.1 for the building walls,

and ε = 2.0, µ = 1.0, σ = 0.001 for the ground. Figure 4.2 shows a wireless CDMA

system in the vehicular scenario, in which a base station communicates with four

mobile users. The base station is located near the corner of 7th Street and Congress

Avenue. Mobiles 1 and 2 move along 6th Street, and mobiles 3 and 4 move along
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Figure 4.3: Azimuthal arriving angles versus path delays of multipaths viewed at the
base station. The gray bar indicates the relative signal strength of each multipath.

8th Street, all at the city speed limit of 30 mph east to west. The base station has

an 8-element uniform circular antenna array at a height of 20 m, with a radius of

0.085 m about half the carrier wavelength. The rooftop heights in this area range

from approximately 8 m to 100 m. Each mobile has a single antenna, 1.5 m off the

ground. The average direct distance from the mobiles to the base station is 250 m.

All the mobiles experience non-line-of-sight (NLOS) propagation channels.

The ray tracing output of the dominant (in terms of received power) paths

is shown in Figure 4.3 and Figure 4.4. The figures indicate the DOA, path delay

and field strength of each multipath viewed at the base station and at each mobile,

respectively. The receiving frame and the transmitting frame have equal length of

320 symbols over a time period of 5 ms. With a CDMA spreading gain of 8, the chip
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Figure 4.4: Azimuthal arriving angles versus path delays of multipaths viewed at
each mobile. The gray bar indicates the relative signal strength of each multipath.

rate is 512 KHz, and the propagation length of one chip period is approximately

586 meters. The maximum delay spread of all the mobiles as shown in Figure 4.3

and Figure 4.4 is less than a chip period. Therefore we use one RAKE finger for

base station reception, assuming that the finger is aligned to the arrival of the

strongest multipath from each mobile. The signals are modulated by the differential

quadrature phase shift keying (DQPSK). The pulse-shaping filter is a raised cosine

function with rolloff factor 0.5.

For the predictive beamforming, the system is operated in FDD mode with

uplink carrier of 1.8 GHz and downlink carrier of 2.0 GHz. Although the frequency

spacing is as large as 10% of the carrier, we apply the prediction coefficients de-

rived from the uplink channel directly to downlink channel feedbacks to simplify
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Figure 4.5: Model order selection by minimum description length criterion (MDL).

the implementation. Using the MDL criterion for the AR model order selection,

Figure 4.5 shows, at high receive SNR, the estimated model orders are 1 for mo-

biles 1 and 3, and 2 for mobiles 2 and 4. This is in agreement with the multipath

distribution exhibited in Figure 4.4, as the model order can be interpreted as the

number of dominant multipaths with large angle difference from each other when

arriving at the mobile. This difference in arriving angles at the mobile results in

different Doppler components. In the prediction of downlink vector channels, we

use the highest model order p = 2 for all 4 mobiles.

The channel prediction performance is demonstrated in Figure 4.6 and Fig-

ure 4.7. Figure 4.6 shows the normalized RMSE of the predicted downlink vector

channels averaged over four mobiles. The RMSE of the predicted downlink channel

is compared with that when the last channel feedback is assumed for current down-

72



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

N
or

m
al

iz
ed

 R
M

S
E

Downlink time (ms)

Last channel feedback. E
b
/N

0
 = 0 dB.

Last channel feedback. E
b
/N

0
 = 30 dB.

Predicted channel vector, g = 8. E
b
/N

0
 = 0 dB.

Predicted channel vector, g = 8. E
b
/N

0
 = 30 dB.

Predicted channel vector, g = 4. E
b
/N

0
 = 0 dB.

Predicted channel vector, g = 4. E
b
/N

0
 = 30 dB.

Figure 4.6: Normalized RMSE of vector channels averaged over four mobiles.

link. Although the prediction is performed in a FDD system without coefficient

modification, the reduction in RMSE shows that the prediction provides sufficient

knowledge of future channel variation, especially at high SNR when the prediction

is more accurate. Two beamforming rates are chosen for comparison, with g = 4

and g = 8 accordingly. Comparing the predicted channel samples at corresponding

downlink time, we see that at low SNR, the RMSE of low beamforming rate (low

sampling rate), is smaller than that of high beamforming rate. Figure 4.7 compares

the mean received signal power fluctuation κ of the predicted downlink with the

mean power fluctuation when the last channel feedback is used to obtain the beam-

forming weights. κ is a measure of more importance to evaluate the performance of

the prediction for beamforming. The downlink beamforming based on the channel

prediction lowers the signal power fluctuation at the mobile receiving under fast
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Figure 4.7: Mean fluctuation of the received signal power averaged over four mobiles.

Rayleigh fading as shown in Figure 4.7. At low SNR, the appropriate reduction in

the beamforming rate provides better prediction performance as we compare g = 4

with g = 8.

Figure 4.8 gives the system performance in the average BER of the four

mobiles on Rayleigh fading channels with AWGN. The BER of the link applying

predictive beamforming is compared with that with no Rayleigh fading, and with

that applying conventional beamforming, where the downlink weights are set ac-

cording to the last channel feedback. The predictive downlink beamforming offers

significant performance improvement. And not surprisingly, at low SNR, the pre-

dictive downlink beamforming using g = 4 outperforms the one using g = 8 due to

its better channel prediction performance.

For subspace-based beamforming, the system is operated either in TDD mode

74



−5 0 5 10 15 20 25 30

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

A
ve

ra
ge

 B
E

R

Conventional beamforming
Predictive beamforming, g = 8
Predictive beamforming, g = 4
No Rayleigh fading

Figure 4.8: Average bit error rate for DQPSK on a Rayleigh fading channel with
AWGN.

with uplink and downlink carriers of 1.8 GHz, or in FDD mode with an uplink carrier

of 1.8 GHz and a downlink carrier of 2.0 GHz. Since the multipaths of mobile 2 have

the largest angle spread (weighted by the field strength) at the base station as shown

in Figure 4.3, and the largest angle spread at the mobile site as shown in Figure 4.4,

the signal received by mobile 2 has the most severe Rayleigh fading. Therefore, we

elaborate on mobile 2 to demonstrate the performance of the proposed downlink

beamforming in the single user case. Figure 4.9 compares the 8 eigenvalues of the

normalized spatial covariance matrix of the despreaded uplink signal of mobile 2,

with interference from other mobile uplinks, and AWGN of 0, 10, 20 and 30 dB

averaged over the receive antennas. At low and high SNR, all the plots show two

dominant eigenvalues, with the rest more than 20 dB down. Therefore, the effective
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Figure 4.9: Eigenvalues of the normalized spatial covariance matrix of the de-
spreaded uplink signal of mobile 2.

rank of the uplink channel subspace is L = 2.

Figure 4.10 shows the receiving bit error rate (BER) of mobile 2 in the

single user case, in which the received signal has no multiple access interference

but self interference. The AWGN at the mobile receiver ranges from -5 dB to 30

dB. As a comparison, we choose L = 1, 2, 3 to generate the beamforming weights

from the uplink channel subspace, and use 1 code channel, 2 code channels and

3 code channels accordingly to transmit the downlink signal to mobile 2 in both

TDD and FDD modes. The BER curves are lower-bounded by the BER with no

Rayleigh fading. The proposed downlink algorithm using 1 code channel is merely

the conventional beamforming, where the weight is constructed as the principle

eigenvector of the spatial covariance matrix. The receiving performance is essentially
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Figure 4.10: Bit error rate for DQPSK on a Rayleigh fading channel with AWGN.
Single user case: mobile 2.

the same for TDD and FDD as indicated by the BER curves in the figure. When

2 sets of weights are used for downlink transmission through 2 code channels, the

receiving BER reduces more than 10 dB in both TDD and FDD modes, especially

at high SNR. And the merit of the algorithm in TDD is distinguished from that

in FDD due to the estimation accuracy of the effective channel subspace in TDD

systems. When 3 sets of weights are used for downlink transmission through 3 code

channels, the receiving BER reduces even more. We observe that the beamforming

advantage of using 3 sets of weights over using 2 sets of weights is not as big as that

of 2 over 1. This is not unexpected since the effective rank of the channel subspaces

is 2.

For the multiple user case, Figure 4.11 shows the eigenvalues of the normal-

77



0 2 4 6 8
−30

−25

−20

−15

−10

−5

0

E
ig

en
va

lu
es

 (
dB

)

Mobile 1

0 2 4 6 8
−30

−25

−20

−15

−10

−5

0
Mobile 2

0 2 4 6 8
−30

−25

−20

−15

−10

−5

0

E
ig

en
va

lu
es

 (
dB

)

Mobile 3

0 2 4 6 8
−30

−25

−20

−15

−10

−5

0
Mobile 4

Figure 4.11: Eigenvalues of the normalized spatial covariance matrices of the de-
spreaded uplink signals of the 4 mobiles. Eb/N0 = 10 dB.

ized spatial covariance matrices of the despreaded uplink signals of the 4 mobiles.

At a receiving SNR of 10 dB, there is one dominant eigenvalue of each of the spa-

tial covariance matrices of mobiles 1 and 3, and two dominant eigenvalues of each

of those of mobiles 2 and 4. The rest of the eigenvalues are all 20 dB down the

largest ones. This is in agreement with the multipath angle distribution exhibited

in Figure 4.3. Therefore, we infer that the effective rank of the uplink channel is 1

for mobiles 1 and 3, and 2 for mobiles 2 and 4.

We apply three schemes as a comparison to construct beamforming weights

and to allocate the code channels accordingly for downlink transmission to all mo-

biles . In Scheme 1, one beamforming weight vector is used and 1 code channel is

allocated for the transmitted signal to each mobile. In Scheme 2, 1 set of weight
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Figure 4.12: Bit error rate for DQPSK on a Rayleigh fading channel with AWGN.
Mobile 2 in multiple user case.

is used and 1 code channel is allocated for the transmission to mobiles 1 and 3,

and 2 sets of weights and 2 code channels for the transmission to mobiles 2 and 4.

In Scheme 3, 2 sets of weights are used and 2 code channels are allocated for each

mobile.

Figure 4.12 and Figure 4.13 illustrate the performance of the downlink re-

ception of mobiles 2 and 4 in the multiple user case, respectively. Each BER is

bounded by the BER with no Rayleigh fading averaged over 4 mobiles. As for

mobiles 1 and 3, the channel has hardly any Rayleigh fading because there is only

one dominant multipath in the link. The BERs of different beamforming schemes

are almost the same and are close to the BER with no Rayleigh fading. For mo-

bile 2, there are 2 dominant multipaths with nearly equal strength. The proposed
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Figure 4.13: Bit error rate for DQPSK on a Rayleigh fading channel with AWGN.
Mobile 4 in multiple user case.

beamforming algorithm which exploits the effective channel subspace (as in Scheme

2 and 3) outperforms the conventional beamforming (as in Scheme 1). However,

the performance of Scheme 3 degrades compared to that of Scheme 2, even though

additional resources of code channels are consumed. This is because it does not

help combating the channel fading by using additional beamforming weights for

over-estimated rank of the effective channel subspace, however, more code chan-

nels introduce more interference due to imperfect code orthogonality. For mobile 4,

there are 2 dominant multipaths in the link, however, one is 15 dB weaker than the

other as shown in Figure 4.11. Therefore, the advantage of exploiting 2-dimensional

channel subspace for downlink transmission is limited, and it is overwhelmed by the

extra interference as more code channels are used in the system.
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Figure 4.14: Average bit error rate for DQPSK on a Rayleigh fading channel with
AWGN.

Figure 4.14 compares the average receiving BER of the 4 mobiles of differ-

ent beamforming schemes. Despite the extra interference of using additional code

channels, Scheme 2 gives the optimum overall performance, since its beamforming

weight construction and code channel allocation fit well with the effective ranks of

the channel subspaces. When we use more code channels than the effective ranks,

the system performance degradation is mainly attributed to the situation of mobile

4.

4.8 Conclusions

The predictive downlink beamforming and the subspace-based downlink beamform-

ing were proposed to combat the fast Rayleigh fading in the wireless channel. The
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predictive beamforming enhances the system performance significantly even when

implemented in FDD base stations without modification of the channel prediction

coefficients, while maintaining the simplicity of mobile receiving. The algorithm has

moderate complexity because it is based on the low-complexity channel prediction

using the AR model.

The subspace-based beamforming outperforms the conventional one, pro-

vided that the effective rank of the channel subspace is well estimated. It can be

implemented in TDD systems where the uplink and downlink channels are recipro-

cal, and in practical FDD systems with moderate performance degradation, thanks

to the negligible distance between the uplink and downlink channel subspaces. The

beamforming approach is not restricted to CDMA systems for which we exploited

the code channels. In fact, using multiple CDMA code channels is just a means

for the mobile to separate the signal copies weighted by the orthonormal basis vec-

tors of the uplink channel subspace. There may be other methods for the effective

separation, for instance, using the subcarriers of the orthogonal frequency division

multiplexing (OFDM) systems.

Physical layer simulations have shown reduction in the receiving BER for

both beamforming algorithms, compared to the systems using conventional downlink

beamforming. The two proposed downlink beamforming approaches are bandwidth-

efficient due to their open-loop nature, and each of them can be combined with

iterative beamforming schemes for optimal system performance.
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Chapter 5

Subspace-Based Estimation for

Wideband CDMA Channels

5.1 Introduction

In this chapter, we consider the estimation of multiuser vector channels for wide-

band CDMA systems. In wideband CDMA (W-CDMA) systems, the intersymbol

interference (ISI) introduced by multipath propagation can be significant due to

the large multipath delay spread. ISI, together with the user asynchronism in the

reverse link, distorts the code orthogonality. Therefore, explicit knowledge of all

user channels is needed for equalization and multiuser detection. One of the key

features of W-CDMA systems is the pilot-assisted channel estimation, in which a

large portion of the bandwidth is reserved for the training sequence overhead. If

the pilots are inserted sparsely in the transmitted data stream, the performance of

channel estimation is limited in a fast-fading environment.

Alternatively, blind channel estimation offers better spectrum efficiency, and

has received increasing attention [60, 61, 62, 63, 64]. Subspace-based channel esti-

mation for CDMA systems exploits the eigenstructure of the received data matrix,
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allowing reconstruction of signature waveforms without the knowledge of input sig-

nals. By assuming knowledge of the user codes but no training sequences, these

subspace-based blind techniques model each of the user channels as an FIR filter

and identify it by exploiting the second-order statistics of the channel output. In

W-CDMA, the order of an FIR filter identifying the entire user channel can be quite

large.

Improved performance in statistical estimation can be expected if one can put

enough constraints on the model structure. Modifications have been made in [65] to

reduce the number of unknown parameters, where the knowledge of the structure

of the propagation channel is incorporated in the subspace methods. However,

an extensive multidimensional optimization search is required in this parametric

subspace approach.

In this chapter, we propose a deterministic approach to estimate the user

channels in W-CDMA systems. Taking into account the a priori information of the

structure of the propagation channel, we describe the channel by a reduced number

of model parameters, i.e. two separable sets of spatial and temporal parameters. Our

approach is computationally more efficient than the traditional subspace method

on the unstructured channel. The nominal path arrival angles and delays, which

describe the general propagation structure, vary slowly compared to the multipath

fading rate. They can be estimated and tracked using a small number of pilot

symbols over a long period of time. In the following sections, the reverse link

(uplink) of the W-CDMA communication systems is considered.

5.2 An Overview of Wideband CDMA Systems

CDMA systems do not have the same hard channel limits as other systems (such as

a fixed number of time slots, RF carriers); capacity is usually determined not by the

number of channel processing element available, but by the total available transmit
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RF bandwidth (MHz) Downlink rates (Kb/s) Uplink rates (Kb/s)
1.25 1.2 – 307.2 1.2 – 307.2
3.75 1.2 – 1036.8 1.2 – 1036.8
7.5 1.2 – 2073.6 1.2 – 2073.6

11.25 1.2 – 2457.6 1.2 – 2073.6
15 1.2 – 2457.6 1.2 – 2073.6

Table 5.1: Channel bandwidths and data rates supported by cdma2000

power or total interference. Therefore, CDMA radio technology is considered a bet-

ter choice to satisfy the requirements of 3G wireless systems. Furthermore, services

that offer multimedia and high data rates demand a wider bandwidth spectrum

for CDMA. W-CDMA radio transmission technologies provide a true multimedia

system that offers improved capacity for both voice and data applications and ac-

cessibility to Internet applications at high data rate. The goal is to support at least

384 Kb/s with wide area coverage and up to 2 Mb/s with local area coverage.

The cdma2000 radio transmission technology (RTT) proposed by North

America meets the IMT-2000 requirement and also retains backward compatibility

with existing cdmaOne networks without any compromise in system performance or

capabilities [66]. Table 5.1 shows the RF bandwidths and data rates supported by

the cdma2000 radio interface. Two spreading options, namely multi-carrier (MC)

and direct-spread (DS), are identified in the W-CDMA RTT.

1. MC-CDMA allows operator to cascade many 1.25-MHz bandwidth carriers to

form a wideband system. The modulation symbols after coding and inter-

leaving are demultiplexed onto N carriers of 1.25 MHz each (N = 3, 6, 9, 12),

where each carrier has a chip rate of 1.2288 Mc/s.

2. DS-CDMA has a single wideband carrier. The modulation symbols are direct

sequence spread using a chip rate of N × 1.2288 Mc/s (N = 1, 3, 6, 9, 12) and
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Figure 5.1: W-CDMA spreading options for an N = 3 system.

the spread signal is modulated onto a single carrier.

Figure 5.1 illustrates the two options for an N = 3 system.

IMT-2000 has targeted PCS systems at bands around 2 GHz. In addition,

IEEE 802.11-based WLANs operate in the 2.4-GHz ISM band. The frequencies in

this region have several attractive features, such as wide coverage and less require-

ment for antenna size and separation.

5.3 Analytical Model of W-CDMA Systems

Structured Channel Model Consider the case of a mobile user communicating

with a base station (BS) with an array of M antenna elements. The baseband
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multipath fading vector channel response can be described as [45]

h(t) =
P∑

i=1

a(θi)βip(t− τi) (5.1)

where P is the total number of paths. p(t) is the chip pulse shaping filter. a(θi), βi

and τi are the array response, the complex amplitude and the delay associated with

the ith path, respectively. In W-CDMA systems, the multipath delay spread may

span several symbol periods.

In the reverse link, the signals transmitted by the mobile users are first

scattered by objects local to the mobile, and then the scattering ray bundles are

reflected or diffracted by objects remote to the mobile. Within each bundle of

rays from a remote reflector, the scattering rays come with arrival angles close to

the nominal direction-of-arrival (DOA) and arrive at the BS with a small delay

spread. The delay difference between ray bundles are relatively large. Assume that

the nominal delays of ray bundles are separable by the W-CDMA receiver. This

propagation structure causes BS path arrivals to cluster in a 2-D direction-of-arrival

(DOA) vs. time-of-arrival (TOA) plot.

Suppose there are Q DOA-TOA clusters viewed by the BS. The channel

response corresponding to the qth cluster can be described as

hq(t) =
Pq∑

k=1

a(θq + θ̃qk)βqkp(t− τqk) (5.2)

where Pq is the number of scattering paths within. θq + θ̃qk is the arrival angel with

nominal DOA θq. With |θ̃qk| being small, a first-order Taylor series expansion of

(5.2) yields (we drop the subscript q on the right side)

hq(t) '
∑

k

(a(θ) + θ̃kd(θ))βkp(t− τk)

= a(θ)
∑

k

βkp(t− τk) + d(θ)
∑

k

θ̃kβkp(t− τk)

= a(θ)g1(t− τ) + d(θ)g2(t− τ) (5.3)

87



where d(θ) = ∂a(θ)/∂θ is the gradient. Therefore the entire vector channel response

follows as

h(t) =
2Q∑

q=1

aq gq(t− τq) (5.4)

where, each path cluster as a dispersive channel is modeled as two FIR filters g2i−1(t)

and g2i(t) (i = 1, . . . , Q), with short supports compared to the symbol period. {τq}
are the nominal delays and are assumed to be pre-estimated by the BS. Note that

because {gq(t)} are somewhat arbitrary, the nominal delays do not need to be es-

timated precisely, and they can be easily tracked when channel varies. We process

{aq} as arbitrary vectors.

Data Model In CDMA systems, the transmitted symbols are spread to chip-rate

data by the user-specified spreading code of length Lc. The signal received at BS

antenna array is x(t) = w(t) ∗ s(t), where s(t) is the transmitted signal. Vector

w(t) is the user signature waveform, which is the convolution of the spreading code

and the channel response w(t) = c(t) ∗ h(t). We introduce the notation for the

discrete-time data sampled at the chip rate

x̄(k) = [xT (kLc − Lc + 1) · · · xT (kLc)]T (5.5)

h̄ = [hT
1 hT

2 · · · hT
Lh

]T (5.6)

w̄ = [wT
1 wT

2 · · · wT
Lc+Lh−1]

T (5.7)

where Lh is the channel length of h(t). The signature waveform w̄ can be expressed
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as

w̄ =




c1

...
. . .

cLc c1

. . .
...

cLc




⊗ IM

︸ ︷︷ ︸
C

h̄ (5.8)

where {ck, k = 1, 2, . . . , Lc} is the spreading code, and ⊗ denotes the Kronecker

product. From (5.4), the discrete vector channel can be expressed as

h̄ = G ā (5.9)

where ā = [aT
1 · · ·aT

2Q]T and G = G ⊗ IM . G is a Lh× 2Q matrix whose columns are

defined as

Col(q){G} =




0I

−−−
ILg

−−−
0II




︸ ︷︷ ︸
Fq




gq(1)

gq(2)
...

gq(Lg)




︸ ︷︷ ︸
gq

(5.10)

where 0I and 0II are zero matrices with dimensions lq ×Lg and (Lh−Lg − lq)×Lg,

respectively. lq is the known nominal delay index. Lg is the maximum order of FIR

filters {gd, d = 1, . . . , 2Q}.
The vector channel from (5.4) can also be expressed as

h̄ = A ḡ (5.11)

where ḡ = [gT
1 · · ·gT

2Q]T and A is a MLh × 2QLg matrix defined as

A = [F1 ⊗ a1, F2 ⊗ a2, · · · ,F2Q ⊗ a2Q] (5.12)
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Suppose signature waveform w̄ spans L symbols, i.e. L = dLh−1
Lc

e+ 1, we partition

vector w̄ into L parts, each having length MLc. If the last one does not have

sufficient elements, it is padded with zeros. Each part is denoted as

w̄k = [wT
kLc−Lc+1 wT

kLc−Lc+2 · · · wT
kLc

]T (5.13)

Therefore the noiseless baseband signal received by the BS over a symbol period

sampled at the chip rate is

x̄(k) = [w̄L w̄L−1 · · · w̄1]




s(k − L + 1)

s(k − L + 2)
...

s(k)




(5.14)

where {s(k)} are the information bearing symbols, which belong to a finite alphabet.

Collecting data x̄(k) from N consecutive symbol periods, we form a Hankel matrix

as

X =




x̄(1) x̄(2) · · · x̄(N −K + 1)

x̄(2) · · · · · · x̄(N −K + 2)
...

...

x̄(K) · · · · · · x̄(N)




= WS (5.15)

where K(< N) is defined as the smoothing factor, and

W =




w̄L · · · w̄1

w̄L · · · w̄1

. . . . . .

w̄L · · · w̄1




MLcK×(K+L−1)

(5.16)

S =




s(−L + 2) · · · s(N −K − L + 2)

s(−L + 3) · · · s(N −K − L + 3)
...

...

s(K) · · · s(N)




(5.17)
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5.4 Subspace-Based Channel Estimation

In the presence of additive white noise, the data matrix in (5.15) becomes

X = WS + N (5.18)

We construct the data matrix by choosing K as L−1
MLc−1 < K < N−L

2 + 1, such that

W is a tall matrix and S is a wide matrix. Due to channel independence and the

randomness of symbol sequences, it is safe to assume that W is of full column rank

and S is of full row rank. Perform singular value decomposition (SVD) on X as

X = [Us Un]


 Σs 0

0 Σn





 VH

s

VH
n


 (5.19)

where Us is a MLcK×(K+L−1) matrix, and Un is a MLcK×(MLcK−K−L+1)

matrix. The orthonormal vectors in Us associated with the signal eigenvalues span

the signal subspace, which is also the column space of W, whereas the orthonormal

vectors in Un associated with the noise eigenvalues span the noise subspace. Due to

the orthogonality between the signal subspace and the noise subspace, the columns

of W are orthogonal to any vector in the noise subspace. Since the matrix W

depends linearly on w̄, we have

Un ⊥ W ⇒ UH
n w̄ = 0 (5.20)

where Un = [T (u1) · · · T (ur)] with r = MLcK −K − L + 1. T (ui) is a MLcL ×
(K +L− 1) block-Hankel matrix. ui is the ith column of Un and is partitioned into

K blocks with each being a vector of length MLc. Following (5.8), (5.9) and (5.11),

the linear equation (5.20) can be written as

UH
n CAḡ = 0 (5.21)

or UH
n CGā = 0 (5.22)

We choose the array response a(θi) and its gradient d(θi) from a point source for

the nominal DOA θi as the initial values for a2i−1 and a2i (i = 1, . . . , Q). Under the
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non-triviality constraint ||ḡ|| = 1, (5.21) can be solved for fixed {aq} in the least-

square sense, i.e. ˆ̄g is the normalized eigenvector corresponding to the minimum

eigenvalue of the matrix AHCHUnUH
n CA. Substituting ˆ̄g into matrix G, we can

obtain {ai} as the least-square solution of (5.22), under the constraint ||ā|| = 1.

Thus we have identified ā and ḡ, and can construct the signature waveform matrix

W up to a phase ambiguity.

In the algorithm development, we assumed that Lg, the maximum order of

FIR filters {gq(t)}, and the channel length Lh are known a priori. In practice, one

may select the maximum local scattering channel spread value for Lg in a particular

application [45], and overestimate the channel order as L̂h. Therefore, the subspace

spanned by Ûn is included in the (true) noise subspace, and the linear equation

(5.20) is still established.

The extension of the algorithm to multi-user systems is straight forward.

Suppose there are R active mobile users in the BS cell, we can rewrite (5.18) as

X = WΓS + N (5.23)

where,

W = [W1 W2 · · · WR] (5.24)

Γ = diag(γ1, . . . , γ1︸ ︷︷ ︸
K+L−1

, . . . , γR, . . . , γR︸ ︷︷ ︸
K+L−1

) (5.25)

S = [ST
1 ST

2 · · · ST
R]T (5.26)

γi (i = 1, . . . , R) is the channel gain of the ith user. Assume that both symbol and

noise are zero-mean i.i.d. random variables with variance σ2
s and σ2

n, respectively.

And assume σ2
s is known to be 1. The data covariance matrix is therefore

Rx =
1

N −K + 1
E{XXH} = WΓΓHWH + σ2

nI (5.27)

Hence, a good estimate of the user channel gain is given by

Γ̂Γ̂H = diag{Ŵ†(R̂x − σ̂2
nI)(Ŵ

†)H} (5.28)
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Figure 5.2: Channel estimation for user 1. (— : actual channel, * : estimated
channel samples.)

where, † denotes the left pseudo inverse. The estimate of the noise variance σ̂2
n is

obtained as the mean of the MLcK −K − L + 1 smallest eigenvalues of R̂x. The

absolute value of the channel gain can be obtained by a (K + L− 1)-smoothing on

|γi|2. In order to estimate the unknown phase, we observe that in the noise free case

X = WΓS = W|Γ|ΦS (5.29)

where,

|Γ| = diag{|γ1|, . . . , |γ1|, . . . , |γR|, . . . , |γR|}

Φ = diag{ejφ1 , . . . , ejφ1 , . . . , ejφR , . . . , ejφR}

Therefore,

ΦS = (W|Γ|)†X (5.30)
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Figure 5.3: Channel estimation for user 2. (— : actual channel, * : estimated
channel samples.)

If the entries in S are either 1 or −1, the phase can be estimated by squaring the

entries of both sides of (5.30)

(Φ¯Φ)(S¯ S) = [(W|Γ|)†X]¯ [(W|Γ|)†X] (5.31)

where, ¯ denotes the Hadamard product. (S¯ S) is a matrix whose entries are all

equal to one, and therefore it is easy to solve ejφi in

(Φ¯Φ) = diag{ej2φ1 , . . . , ej2φ1

︸ ︷︷ ︸
K+L−1

, . . . , ej2φR , . . . , ej2φR

︸ ︷︷ ︸
K+L−1

} (5.32)

5.5 Simulations

A W-CDMA system is simulated, in which a base station receives signals from R = 2

mobile users. The BS has M = 4 antennas spaced λ/2 in a linear array. The carrier
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Figure 5.4: Signal constellations of user 1 and user 2.

frequency is 2 GHz. There are two dominant scattering ray bundles from each user

arriving at the BS, with nominal DOAs and nominal delays uniformly distributed

on [0, 2π) and [0, LcT ], respectively. T is the chip period. We assume that the

nominal DOAs and delays are pre-estimated. Within each ray bundle, there are 3

individual multipaths, with pass losses and delays uniformly distributed on [0 dB,

20 dB] and [0, 4T ], respectively. The maximum angle spread is 5 degrees from the

nominal DOA.

We generate random QPSK signals for both mobile users, which are then

spread by the CDMA spreading code of length Lc = 16, and modulated by a raised-

cosine pulse function with a roll-off factor of 0.25, truncated to a length of 4T . The

average received power of the signal from user 2 is 6 dB lower than that from user 1.

The proposed method of channel estimation is applied with N = 100, K = 2.

Lg is selected to be 7. Once the channel h̄i (i = 1, 2) is estimated, we can construct

the signature waveform matrix W and detect the symbols transmitted by each user.

An example of channel estimation is demonstrated in Figure 5.2 and Fig-

ure 5.3, where SNR = 10 dB. They show the agreement of the actual channel and

the estimated channel samples at the second and fourth antenna elements of both

users. Although the signals are QPSK encoded, the channel gain and the phase

can be estimated by a similar approach as in section 5.4. The compensated signal
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Figure 5.5: Normalized RMSE versus channel output SNR.

constellations are shown in Figure 5.4.

We define the normalized root mean square error as

RMSE =
1
||h̄||

√√√√ 1
Nt

Nt∑

i=1

||ˆ̄h− h̄||2 (5.33)

where the number of Monte Carlo trials is chosen as Nt = 1000. Figure 5.5 shows

the normalized RMSE of channel estimation with channel output SNR varying from

0 to 30 dB.

In Figure 5.6, we compare the average bit-error-rate (BER) for the W-CDMA

receiver applying the subspace method with that for the RAKE receiver with pseudo

inverse beamforming. The 2-finger RAKE receiver has a finger for each dominant ray

bundle, and the 6-finger RAKE receiver has a finger for each individual multipath

component. The proposed method outperforms the RAKE receiver at high SNR,
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Figure 5.6: Average BER versus channel output SNR.

because it cancels the interference from the other user by estimating both channels.

5.6 Conclusions

We have presented an algorithm for the subspace-based multiuser channel estima-

tion in W-CDMA systems. The algorithm uses information of the slow-varying

large-scale structure of the propagation channel and exploits the subspace proper-

ties of the received data matrix in a deterministic framework. This approach is

computationally efficient, while preserving the performance of the traditional blind

channel estimation techniques.
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Chapter 6

MIMO Wireless Systems Using

Antenna Pattern Diversity

6.1 Introduction

Multiple-input multiple-output (MIMO) wireless communication is one of the most

promising technologies for improving the spectrum efficiency of wireless communi-

cation systems. It is well known that the use of MIMO antenna systems allows the

channel capacity to scale in proportion to the minimum of the number of transmit

and receive antennas in uncorrelated Rayleigh fading channels [10, 11]. Of course,

real channels do not satisfy these ideal assumptions, thus recent work has focused

on measuring and characterizing real MIMO propagation channels [67]. In parallel,

work is continuing on efficient space-time coding strategies that achieve the benefits

of MIMO communication [7, 8]. However, thus far there has been little work on

one of the most important aspects of MIMO communication systems – the antennas

that are used at both the transmitter and receiver.

The correlation between sub-channels of the matrix channel limits the MIMO

channel capacity considerably [68, 69]. One way to reduce correlation is to use an-
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tennas with different polarizations and radiation patterns [70, 71]. Recent results

on polarization diversity show that up to six degrees of freedom are available in the

polarization channel, thus the channel capacity can be increased dramatically [72].

However, the sub-channels created by antenna polarization diversity are not com-

pletely decorrelated in a real environment, such that the effective degrees of freedom

are much less than six, therefore the capacity increase is limited.

In this chapter, we investigated the impact of antenna pattern and polar-

ization on MIMO communication channels. We specialize our results to the case

where the antennas are collocated and thus only pattern and polarization, but not

antenna spacing, are the parameters of the spatial signatures. This is important

for mobile applications where space is extremely limited [71]. First we introduce a

general channel model that shows how pattern diversity is the natural generaliza-

tion of polarization diversity. The MIMO channel is decoupled into sub-channels to

quantify the effect of channel correlation. Then we show how orthogonality between

patterns decorrelates the signal in highly scattering environments, hence reducing

the loss due to channel correlation. Using an electromagnetic ray-tracing simulator,

we show that the capacity increase is determined by the selection of antennas of

different patterns, and by various propagation environments. Finally, we propose a

prototype of MIMO handheld terminal that employs multiple collocated antennas.

The capacity gain is provided by the antenna pattern diversity of the system, and

it is compared with the capacity gain of a spatial multiplexing system.

This chapter is organized as follows. In Section 6.2, we introduce the chan-

nel capacity and the mutual information of the MIMO wireless system, and discuss

the correlation between sub-channels. In Section 6.3, the MIMO system that ex-

ploits antenna pattern diversity is described, and pattern diversity is included in the

channel transfer matrix. Section 6.4 demonstrates the capacity increase obtained

through antenna pattern diversity via a ray-tracing simulator. Section 6.5 restates
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the necessity of antenna array design for the MIMO handheld terminal. In Sec-

tion 6.6, we derive the correlation coefficients of collocated antennas with pattern

diversity. In Section 6.7, we propose a prototype of the compact handheld termi-

nal, whose antenna array consists of collocated antennas with dissimilar radiation

patterns. Finally, conclusions are drawn in Section 6.8.

6.2 MIMO Channel Capacity Under Correlated Fading

Consider a narrowband MIMO wireless system with nT transmit antennas and nR

receive antennas. The induced voltages at the receive antennas are related to the

impressed voltages at the transmit antennas as

v(R) = AHv(T ) + n (6.1)

where v(R) = [v(R)
1 v

(R)
2 · · · v(R)

nR ]T are the voltages at the receive antennas, v(T ) =

[v(T )
1 v

(T )
2 · · · v(T )

nT ]T are the voltages at the transmit antennas. H is the normalized

channel transfer matrix modeling the small-scale fading process, A2 encompasses

the (spatially local-averaged) large-scale path loss and shadowing, and n is the

additive white Gaussian noise (AWGN) vector. If we assume that the channel state

information (CSI) is completely known by the receiver but not by the transmitter,

the transmitted signal vector is composed of nT statistically independent Gaussian

components with equal power. For a narrowband MIMO channel with uniform

power allocation constraint, the mutual information between the transmitter and

the receiver is given by [11]

M(H) = log2

[
det

(
InR +

ρ

nT
HH†

)]
(6.2)

where ρ is the average signal-to-noise-ratio (SNR) at each receive antenna, † de-

notes conjugate transpose. The ergodic channel capacity C is the expectation of

M(H) taken over the probability distribution of H. We will assume nT = nR = n

throughout the rest of the paper.
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Suppose the communication is carried out using bursts (packets). The burst

duration is assumed to be short enough such that the channel can be regarded

as essentially fixed during a burst, but long enough that the standard information-

theoretic assumption of infinitely long code block lengths can be used. In this quasi-

static scenario, it is meaningful to associate the “instantaneous” channel capacity

with the mutual information given a realization of the channel matrix H. From

(6.2), the mutual information can be further expressed as

M(H) =
n∑

i=1

log2

(
1 +

ρ

n
λi

)
(6.3)

where {λi} are the eigenvalues of HH†. At high SNR, the mutual information can

be approximated by

M(H) ≈
rank(H)∑

i=1

log2(
ρ

n
λi) (6.4)

Since λi ≤ n for a normalized H, an upper bound of the mutual information (at

high SNR) can be derived as [72]

M(H) ≤ rank(H) log2 ρ (6.5)

The equality is achieved when a total of rank(H) sub-channels are uncorrelated.

However, complete decorrelation is hard to achieve in a practical scattering environ-

ment.

In order to quantify the effect of channel correlation, the MIMO channel

is decoupled into n single-input single-output (SISO) sub-channels. Performing the

singular value decomposition of the channel matrix H as H = UΣV, we can rewrite

the input-output relationship as

y = Σx + u (6.6)

where, y = U†v(R), x = AVv(T ), and u = U†n. Because Σ is a diagonal matrix, the

MIMO channel is transformed into n SISO sub-channels with gains σ2
1, σ

2
2, . . . , σ

2
n,
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where {σi} are the diagonal entries of Σ. The mutual information of the MIMO

channel is the sum of the mutual information of the n sub-channels [68, 69],

M(H) =
n∑

i=1

log2

(
1 +

ρ

n
σ2

i

)
(6.7)

where we assume uniform transmitted power allocation on the transmit antennas.

This is exactly the mutual information of MIMO channel expressed in (6.3), with

σ2
i = λi being the eigenvalues of HH†. The channel capacity is determined by the

values of the eigenvalues. When a sub-channel is correlated with another one, the

corresponding eigenvalue becomes small, which results in a sub-channel with small

gain. From (6.7) we see that the correlated sub-channel contributes little to the

total mutual information. The decorrelation of the sub-channel is conventionally

provided by spatial diversity, that is, using spatially separated multiple antennas at

the transceivers such that each transmitter-receiver pair experiences a different fad-

ing channel. With insufficient spacing of local antennas, however, strong correlation

can be exhibited between the sub-channels, and consequently the MIMO channel

capacity is reduced considerably.

For a narrowband time-invariant MIMO channel with a unform power allo-

cation constraint, the mutual information between an nT -antenna transmitter and

an nR-antenna receiver is given by (6.2). If the fading of transmitter-receiver pairs

is uncorrelated, the entries of H are i.i.d. complex Gaussian. A general type of cor-

relation of the fading can be represented using a four-dimensional tensor operation

on H̃, where H̃ is a matrix with uncorrelated complex Gaussian entries [73]. In our

case, the antennas at the base station are assumed uncorrelated, whereas the anten-

nas at the handheld terminal are correlated due to insufficient spacing. Therefore,

the channel transfer matrix of uplink can be represented by a transformation matrix

K operating on H̃ as

H = KH̃ (6.8)
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Substituting (6.8) into (6.2) we have

M = log2

[
det

(
InR +

ρ

nT
ΨH̃H̃†

)]
(6.9)

where Ψ = K†K is the spatial covariance matrix of the signals received by the

handheld terminal. The entry ψij of Ψ is given by the correlation coefficient of the

signals received by antennas i and j. The correlation coefficients depend on both the

antenna array configuration and the angular spectrum of the incident radio waves.

For spatial diversity in a horizontal plane, the correlation coefficient of the

signals received by antenna i and j, separated by distance dij , and illuminated by

an angular spectrum p(φ) is [30]

ρij =
∫ 2π

0
ejkdij cos(φ−α)p(φ)dφ,

∫ 2π

0
p(φ)dφ = 1 (6.10)

where φ is the azimuthal angle of the incident wave, k = 2πfc/c is the wavenumber,

and α is the angle of the array orientation. In the case of uniform illumination

p(φ) = 1/2π, ρij = J0(kdij), where J0 is the zeroth order Bessel function. To

achieve near complete decorrelation, the antennas should be spaced at least λ/2

apart.

6.3 MIMO Systems Using Antenna Pattern Diversity

To introduce sub-channel decorrelation to the MIMO system which has insufficient

antenna spacing, we propose a transceiver array which is composed of antennas with

appropriate dissimilarity in radiation patterns, and allow the antenna pattern diver-

sity to be expressed in the channel transfer matrix. The antenna pattern diversity

can be exploited in conjunction with spatial diversity to achieve better channel per-

formance in implementation. However, only pattern diversity is addressed in this

context for a clear demonstration.

Suppose the transmit antennas are collocated but have different radiation

patterns. The receive antennas are also collocated, each of which has a radiation
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pattern the same as one of the transmit antennas. For a narrowband channel at

fixed carrier frequency fc = c/λ, the channel transfer matrix G = AH, where A is

defined as before, H is the normalized channel transfer matrix modeling both the

multipath fading effect and the antenna pattern diversity. By ray-tracing [74] from

the transmit antenna to the receive antenna, the voltage on the ith receive antenna

excited by the transmission of the kth transmit antenna is (See Appendix C)

v
(R)
i,k = β

M∑

m=1

Em
k · Fi(θ(R)

m , φ(R)
m ) (6.11)

where β is a proportionality constant (assume β = 1), M is the number of multi-

paths in the link, Fi(θ(R), φ(R)) is the ith receive antenna pattern, (θ(R), φ(R)) is the

receiving angle of each ray, and Em
k is the incident field of the mth multipath at the

receiver,

Em
k =

e−jk0lm

lm
fm,k

(
Fk(θ(T )

m , φ(T )
m )

)
v

(T )
k (6.12)

where k0 = 2π/λ, lm is the path length of the mth multipath, fm,k(·) is the functional

of reflection and diffraction, and Fk(θ(T ), φ(T )) is the kth transmit antenna pattern,

(θ(T ), φ(T )) the transmitting angle. Therefore G has complex scalar entries

Gi,k =
M∑

m=1

e−jk0lm

lm
fm,k

(
Fk(θ(T )

m , φ(T )
m )

)
· Fi(θ(R)

m , φ(R)
m ) (6.13)

And G can be expressed as

G =
M∑

m=1

e−jk0lm

lm
G̃m (6.14)

where

G̃m,i,k = fm,k

(
Fk(θ(T )

m , φ(T )
m )

)
· Fi(θ(R)

m , φ(R)
m ) (6.15)

Because the transmit antennas and the receiver antennas are collocated, the dif-

ference in path lengths and phases of the rays travelling between any transmitter-

receiver pairs can be neglected. The difference of the entries of G is solely caused

by the antenna pattern diversity implied in G̃m.
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One observation is that using the dual-polarized transmitter-receiver pair

where two linear dipoles with equal gain are orthogonally collocated at each end,

the two sub-channels are almost uncorrelated with the presence of a strong line-

of-sight (LOS) multipath component. The relatively large gains σ2
1 and σ2

2 of the

sub-channels are provided by the quasi-orthogonal structure of H, and the mu-

tual information reaches its maximum among normalized 2×2 channel realizations.

However, the upper bound of mutual information (6.5) introduced in [72] is loose

in a MIMO system using pattern diversity of a large number of transmitter-receiver

pairs. As we will see in the simulation, the mutual information provided by some

sub-channels are nearly zero. Although the rank of H is guaranteed, the correspond-

ing eigenvalues of HH† are small compared to the dominant ones, which is a direct

result of severe correlation of the sub-channels.

In order to achieve uncorrelated sub-channels, the goal of antenna design is

to make the incident fields of the transmission from one antenna align with the radi-

ation pattern of the desired receive antenna, while being orthogonal to the patterns

of other antennas. However, in the real electromagnetic world, the sub-channels,

which are characterized by the summation of the dot products in (6.13), may not

be completely orthogonal.

6.4 Ray Tracing Simulations

The distribution of MIMO channel capacity can be calculated given the distribu-

tion of the eigenvalues of HH†. However, for a general covariance of fading and

pattern diversity and a finite dimensionality, the distribution of eigenvalues can be

very difficult to compute. The exact distribution of channel capacity is studied via

numerical computation using an electromagnetic ray tracer FASANT [59] in this

section. It is a deterministic ray tracing technique based on geometric optics and

the uniform theory of diffraction. (See Appendix B).
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Figure 6.1: Street lattice with transmitter positions T1 and T2, and receiver moving
tracks R1 and R2.

A street lattice in Figure 6.1 is simulated as the geometry input of FASANT.

The size of each building block is (10×10×10) m3, and the street width is 10 m. The

material properties for the building walls and the ground are: relative permittivity

ε = 2.0, relative permeability µ = 1.0, and conductivity σ = 0.08. There are two

transmission points T1 : (20, 20, 5)m and T2 : (24, 10, 5)m, where T1 is in the middle

of a street crossing. The receiver can move along two streets shown as the tracks

R1 and R2.

The infinitesimal electric-dipole of electric source J or current-loop of mag-

netic source M is used as the transmit and receive antenna element. At each end

of the communication link, two orthogonally placed electric-dipoles with their feed

points collocated form a 2 × 2 MIMO system. Three such orthogonally placed

electric-dipoles form a 3× 3 MIMO system, and another three orthogonally placed
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Figure 6.2: Eigenvalues of normalized HH† of the 6× 6 MIMO channel in Case 1 .
The transmitter is located at T1, and the receiver moves along 4 tracks as: (a) (-1,
-35, 3)→(-1, 35, 3), (b) (1, -35, 3)→(1, 35, 3), (c) (-1, -35, 1)→(-1, 35, 1), (d) (1,
-35, 1)→(1, 35, 1).

current-loops, which are referred to as magnetic-dipoles, collocated with the 3 × 3

electric-dipoles form a 6× 6 MIMO systems. The radiation pattern of the electric-

dipole with vertical J in the spherical coordinate system is E = sin(θ)âθ, and the

radiation pattern of the magnetic-dipole with vertical M is E = − sin(θ)âφ. The

carrier frequency is 1.8 GHz, that is, a carrier wavelength of 0.167 m.

Case 1 In case 1, the transmit antenna array is located at T1, and the re-

ceive antenna array moves along 4 tracks (-1, -35, 3)→(-1, 35, 3), (1, -35, 3)→(1,

35, 3), (-1, -35, 1)→(-1, 35, 1), and (1, -35, 1)→(1, 35, 1) on the same street close

to track R1. Therefore, as the receiver changes its position, it experiences both
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Figure 6.3: Mutual information of the 2×2, 3×3 and 6×6 MIMO channels in Case 1,
averaged over neighboring 8 receiving positions. The LOS region is y ∈ [13.33, 26.67]
m.

line-of-sight (LOS) and non-line-of-sight (NLOS) channels.

Figure 6.2 shows the eigenvalues of the normalized HH† along each track.

Each of the transmit and receive antenna arrays is composed of three electric-dipoles

orthogonally placed along x, y, z axes of the Cartesian coordinate system and three

such orthogonally placed magnetic-dipoles, therefore every H along the tracks is

a realization of the 6 × 6 MIMO channel. There are two dominant eigenvalues of

HH† of each realization of the channel, the next two are about 20 dB down, and

the weakest two are about 40 dB down the dominant ones. The drop of weaker

eigenvalues, especially in the LOS region from y = 13.33 m to y = 26.67 m, reveals

the strong correlation between the sub-channels.
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Figure 6.4: Ratios of mutual information of 6× 6 to 2× 2, 6× 6 to 3× 3, and 3× 3
to 2× 2 MIMO systems in Case 1.

Figure 6.3 compares the local-averaged mutual information of the 6×6 MIMO

systems with that of the 2 × 2 and 3 × 3 MIMO systems. In the 2 × 2 MIMO

system, each of the transmit and receive antenna arrays is composed of two electric-

dipoles orthogonally placed along the y and z axes of the Cartesian coordinate

system. In the 3× 3 MIMO system, the array is composed of three electric-dipoles

orthogonally placed along x, y and z axes. The average receive SNR = 20 dB. The

figure shows the channel capacity increase of the 6 × 6 and 3 × 3 MIMO systems

that using collocated antennas exploiting the pattern diversity over the conventional

dual-polarized antenna systems as the 2× 2 MIMO systems. The antenna pattern

diversity is provided by the scattering environment, as a result, the MIMO channel

that exploits antenna pattern diversity in the LOS region has less capacity increase
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Figure 6.5: Eigenvalues of normalized HH† of the 6× 6 MIMO channel in Case 2.
The transmitter is located at T2, and the receiver moves along 2 tracks as: (a) R2

LOS case. (b) R1 NLOS case.

as shown in the figure.

Figure 6.4 shows the ratios of mutual information of systems of different

numbers of dimension as above. Comparing mutual information of the 6× 6 system

with that of the 2 × 2 system, we find the “instantaneous capacity” in any posi-

tion of the scattering environment is not ideally tripled, contrast to what is claimed

in [72], due to the correlation between sub-channels. This result is expected from

the eigenvalue plot of Figure 6.2, because, besides the two dominant sub-channels

as in the dual-polarized antenna systems, sub-channels of a system with collocated

antennas at transmitter and receiver are correlated in a practical scattering envi-

ronment. The electrical components and the magnetic components of the field are

also highly correlated.

Case 2 In case 2, the transmit antenna array is located at T2, and the re-

ceive antenna array moves along the LOS street R2 : (20,−35, 1.5) → (20, 35, 1.5),

and the (almost) NLOS street R1 : (0,−35, 1.5) → (0, 35, 1.5).

Figure 6.5 shows the eigenvalues of the normalized HH† of the 6× 6 MIMO

system, where each of the transmitter and receiver antenna arrays has three electric-
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Figure 6.6: CCDFs of instantaneous capacities of the 2× 2, 3× 3 and 6× 6 MIMO
channels in Case 2. Average receive SNR = 20 dB. (a) The receiver moves along
the LOS street R2. (b) The receiver moves along the NLOS street R1.

dipoles, orthogonally placed along x, y, z axes collocated with three such orthog-

onally placed magnetic-dipoles. Figure 6.5(a) shows the eigenvalues of the chan-

nel realizations when the receiver changes its position along R2, the LOS region.

Figure 6.5(b) shows the eigenvalues of the channel realizations when the receiver

changes its position along R1, the NLOS region. The better decorrelation effect of

the sub-channels in a rich scattering environment (NLOS region) is revealed as the

increase in the smaller eigenvalues.

Figure 6.6 compares the complementary cumulative distribution functions

(CCDF) of instantaneous channel capacities of the 2 × 2, 3 × 3 and 6 × 6 MIMO

systems, when the receiver changes its position along the LOS and NLOS streets.
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For the 2 × 2 MIMO system, the transceiver antenna array is composed of two

electric-dipoles along the x and z axes, and this is simply the dual-polarized system

in the LOS region. The average receive SNR = 20 dB. As shown in the figure, the

large increase in channel capacity of a MIMO system that exploits antenna pattern

diversity, referring to a dual-polarized MIMO channel, is more likely to occur in the

NLOS region, that is, in the rich-scattering environment.

6.5 Design MIMO Handheld Terminal

Multiple-input multiple-output (MIMO) wireless systems use multiple antennas at

both the transmitter and the receiver to offer a large increase in channel capacity [10,

11]. Parallel data pipes can be opened between the transmit and the receive antennas

if the fading of the transmitter-receiver pairs is uncorrelated. The base station in

a typical mobile radio system is usually located well above surrounding objects,

and the angle spread of the multipaths arriving at the base station is typically

1 − 10◦. The necessary antenna spacing for decorrelation is on the order of 5− 10

wavelengths [13]. The handheld terminal is usually used in a cluttered environment,

and therefore has a large angle spread of the multipath arrivals. For a uniform

angular illumination, a minimum antenna spacing of half wavelength is required for

decorrelation [30].

Sufficient antenna spacing at the base station is relatively easy to implement.

Due to the small size of the handheld terminal, however, sufficient antenna spacing to

achieve decorrelation at the mobile unit can be a difficult task. For example at PCS

spectrum around 2 GHz, a half wavelength spacing means 7.5 cm apart between

antenna elements. This is not suitable for a handheld terminal, especially when

more than two antennas are to be equipped for MIMO communication. Further,

the assumption of a rich scattering environment with uniform angular illumination

is not always valid. This may lead to significant correlation with small antenna
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spacing.

In the rest of this chapter, we propose an array structure for the MIMO

handheld terminal that exploits antenna pattern diversity instead of spatial diver-

sity [72, 71]. Neglecting the size of the antenna, we regard the antennas in this

structure as being collocated. The fading correlation of the terminal antennas is

derived, and the mutual information between the transmitter and the receiver is

obtained by considering the channel as a combination of the propagation environ-

ment and the antenna array configuration [75]. Simulation results show that, in a

rich scattering environment, collocated antennas with appropriate dissimilarity in

pattern can achieve channel capacity equivalent to a system with half-wavelength

antenna spacing. In a scattering environment with small angle spread, collocated

antennas with pattern diversity can maintain large channel capacity, however, an-

tenna array that exploits spatial diversity requires at least a few wavelength antenna

spacing for near complete decorrelation.

6.6 Collocated Antennas with Pattern Diversity

The complex envelope of the voltage on the receive antenna is given by [30]

V (t) = β

∮
A(Ω) ·E(Ω)e−jku·âr(Ω)tdΩ (6.16)

where β is a proportionality constant (assume β = 1), A is the receiving field

pattern of the antenna, E is the electric field of the incident wave, e−jku·âr(Ω)t is

the Doppler shift caused by the terminal velocity u, âr is a unit vector in the radial

direction, and Ω is the coordinate point on a spherical surface given by (θ, φ). Due

to the randomness of the incident waves, V (t) is a zero mean random variable, and

the correlation coefficient of the received signals, represented by the voltages on

antennas i and j, is given by

ψij =
E{ViV

∗
j }

σiσj
(6.17)
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where σ2
i = E{ViV

∗
i }, σ2

j = E{VjV
∗
j }. It is credible to assume negligible phase

change of each incident wave arriving at collocated antennas. We also assume that

the phase angles of Eθ and Eφ are independently distributed on [0, 2π), and they

are independent for waves arriving from different directions [30]. Therefore, the

correlation coefficient of collocated antennas i and j becomes

ψij =
1

σiσj

∮
E{(Ai(Ω) ·E(Ω))(A∗

j (Ω) ·E∗(Ω))}dΩ (6.18)

With A(Ω) = Aθ(Ω)âθ +Aφ(Ω)âφ, and E(Ω) = Eθ(Ω)âθ +Eφ(Ω)âφ, we have further

ψij =
1

σiσj

∮
(Aiθ(Ω)A∗jθ(Ω)Pθ(Ω) + Aiφ(Ω)A∗jφ(Ω)Pφ(Ω))dΩ (6.19)

where

Pθ(Ω) = E{Eθ(Ω)E∗
θ (Ω)}

Pφ(Ω) = E{Eφ(Ω)E∗
φ(Ω)} (6.20)

We define the angular spectrum of illumination as P (Ω) = Pθ(Ω)+Pφ(Ω). Suppose

that the base station antennas can transmit various polarized signal waves, and

the incident waves arriving at the handheld terminal have uniformly distributed

polarization angles, therefore the angular spectrum has equal θ and φ components

as

Pθ(Ω) = Pφ(Ω) =
P (Ω)

2
(6.21)

And the correlation coefficient can be written as

ψij =
1

2σiσj

∮
(Ai(Ω) ·A∗

j (Ω))P (Ω)dΩ (6.22)

With incident waves of uniformly distributed angular spectrum, even though the av-

erage received power at each antenna is independent of the actual antenna radiation

pattern, the correlation coefficient can be adjusted less than one by reducing over-

lap of antenna patterns. Unlike antenna systems that use spatial diversity, where
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Figure 6.7: Three-element antenna array of handheld terminal.

decorrelation is provided by antenna separation, in antenna systems that exploit

pattern diversity, the decorrelation is provided by antenna pattern dissimilarity. As

indicated in (6.22), the covariance matrix Ψ is the weighted correlation between

local antennas, where the weights are the angular spectrum of illumination at the

handheld terminal.

6.7 A Simulated Prototype

We use two collocated antennas or three collocated antennas at the handheld ter-

minal. Figure 6.7 describes the case of the three-antenna array. Each antenna has

an “unfolding” polar angle θ opposite to the other antenna(s) in order to create

pattern dissimilarity. (For rotation of antenna patterns, see Appendix D). Elec-
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Figure 6.8: Correlation coefficient between antenna elements of the two-element
array. Uniform illumination.

trically short dipoles are assumed in the simulation, where the antenna radiation

pattern of a vertical dipole (θ = 0) is A(Ω) = sin(θ)âθ. In a cluttered environment,

the incident waves at the handheld terminal may come from all azimuthal angles φ.

Two distributions of the angular spectrum of illumination in φ are used: a uniform

distribution on [0, 2π), and a Gaussian distribution with a standard deviation of

σ = 5◦, where the median incident direction is along the broadside of two antennas.

We assume uniform distribution of illumination in elevation angle θ. The distribu-

tion is restricted to a small angle spread ∆θ around the horizontal plane (θ = π/2),

depending on the building heights and distances from the base station. Experiments
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Figure 6.9: Correlation coefficient between antenna elements of the two-element
array. Gaussian angular spread at broadside, σ = 5◦.

in suburban and urban environment indicate that distributions extending to 30◦ in

elevation are quite common [30].

Figure 6.8 and Figure 6.9 illustrate the dependence of the correlation co-

efficient ψ on the “unfolding” polar angle of the antennas in the two-dipole array

case. The effect of mutual coupling between local antennas is not considered in

the simulation. The uniform angular spectrum in θ are restricted to the elevation

angle spread of ∆θ = 5◦, 30◦, 60◦, 90◦, 120◦, 180◦. Both figures show close trend of

the change in correlation of various elevation angle spread of illumination. In Fig-

ure 6.8, a rich scattering environment is simulated, where the angular spectrum in
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φ is uniformly distributed on [0, 2π). In Figure 6.9, the incident waves have a small

angle spread in φ, and the angular spectrum is Gaussian distributed with σ = 5◦.

The figures demonstrate similar dependence of the correlation on the polar angle

of antennas. In both cases, near zero correlation appears when the two dipoles are

placed orthogonal to each other, that is, with “unfolding” angle θ = 45◦.

We simulate a MIMO system that employs uncorrelated various polarized

antennas at the base station, and collocated antennas as constructed above at the

handheld terminal. With 3 or 2 antennas at both transceivers, the system has

either a 3 × 3 or a 2 × 2 MIMO channel. The receive SNR is 10 dB. Figure 6.10

illustrates the dependence of the channel capacities on the “unfolding” polar angle

of terminal antennas. The elevation angle spread of illumination is ∆θ = 30◦.

The azimuthal angular spectrum is either uniform on [0, 2π), or Gaussian with

σ = 5◦. The figure shows that in both scattering environments, the terminal antenna

array with collocated but orthogonally positioned dipoles can provide capacities that

approach the capacities of 3 × 3 or 2 × 2 MIMO Rayleigh channels. Note that in

order for the dipoles of the three-antenna array to be orthogonal to each other, the

“unfolding” polar angle θ = sin−1(
√

2/3) ≈ 54.7◦.

From (6.9) we know that in order to have large channel capacity, the co-

variance matrix Ψ should be close to an identity matrix. For a uniform elevation

illumination with angle spread of ∆θ = 30◦, and a uniform azimuthal illumination

on [0, 2π), the correlation coefficient of the signals received by the two-dipole array

can be calculated as

ψ12 =
1

2σ1σ2

∫ 2π

0

∫ 7π/12

5π/12
A1(θ, φ) ·A∗

2(θ, φ)dθdφ

=
π

48σ1σ2
(9− π + (5π + 3) cos(2θ0)) (6.23)

where A1 and A2 are the receiving field patterns of the antennas “unfolded” by

θ0 to the opposite directions, θ0 is the “unfolding” angle. For maximum channel

capacity, we make Ψ an identity matrix by setting ψ12 = 0, which corresponds to
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an “unfolding” angle of

θ0 =
1
2

cos−1

(
π − 9
5π + 3

)
≈ 54.1◦ (6.24)

The correlation coefficient of the signals received by the three-dipole array can be

calculated as

ψ12 = ψ23 = ψ31 =
1

2σ1σ2

∫ 2π

0

∫ 7π/12

5π/12
A1(θ, φ) ·A∗

2(θ, φ)dθdφ

=
π

96σ1σ2
(π + 15 + (7π + 9) cos(2θ0)) (6.25)

By setting ψ12 = 0, we obtain the “unfolding” angle for maximum channel capacity
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as

θ0 =
1
2

cos−1

(
−π + 15

7π + 9

)
≈ 62.9◦ (6.26)

These optimum “unfolding” polar angles are revealed in Figure 6.10. For

the case of three-antenna array in Gaussian illumination, Ψ can not be exactly an

identity matrix due to the asymmetry of correlation coefficients. Therefore, the

channel capacity can not be achieved as large as in the 3× 3 Rayleigh case, where

the fading of transmitter-receiver pairs are uncorrelated.

As a comparison, in the same scattering environments, Figure 6.11 shows
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the capacities of the 3× 3 MIMO channel and the 2× 2 MIMO channel, where the

terminal array is composed of antennas with same radiation patterns. The diversity

is provided through antenna spacing, that is, two separated vertical dipoles or three

evenly separated vertical dipoles on a circle. When the handheld terminal is in a

rich scattering environment with a uniform illumination in φ, an antenna separation

of a half wavelength is required to achieve channel capacity as large as of the MIMO

system with uncorrelated fading. If the incident waves have a small azimuthal angle

spread with Gaussian distribution, arriving along the broadside of the array, an
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antenna separation of at least a few wavelengths is required to achieve large MIMO

channel capacity.

One goal is to build a terminal array with a fixed “unfolding” polar angle that

can provide large channel capacity robust to the change of the scattering character-

istics. In Figure 6.12, the capacities of a 3 × 3 MIMO system, where the terminal

array is composed of three orthogonally collocated dipoles, are compared with the

capacities of a 3× 3 MIMO system, where the terminal array is composed of three

vertical dipoles with λ/2 spacing. When the handheld terminal is in a rich scattering

environment, both array structures can provide large MIMO channel capacities that

approach the capacity of the 3× 3 Rayleigh channel. As the scattering environment

changes and results in a small angle spread of incident waves, the MIMO system

that exploits antenna pattern diversity outperforms the one that exploits antenna

spatial diversity, in that the former preserves near complete decorrelation of the

transmitter-receiver pairs and its channel capacity does not decrease as much.

6.8 Conclusions

A MIMO wireless system that exploits antenna pattern diversity has been presented.

Although the antennas are collocated at the transmitter and receiver, the system

offers large capacity increase promised by the MIMO architecture. However, the

capacity increase is limited due to the correlation between sub-channels in a practical

scattering environment. The MIMO channel capacity is affected not only by the

antenna pattern selection, but by the characteristics of the scattering environment

as well. Using a computational electromagnetic simulator, we show that: (1) MIMO

systems that exploit antenna pattern diversity allow for improvement over dual-

polarized antenna systems; (2) The capacity increase of such MIMO systems depends

on the characteristics of the scattering environment.

For a MIMO wireless system that has restrictions on the size of the handheld
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terminal, we have proposed a scheme to provide fading decorrelation through the

antenna pattern diversity. We showed that with appropriate selection of antenna

patterns, the array with collocated antennas can provide channel capacity equivalent

to the MIMO terminal that employs antenna array with sufficient antenna spacing.

The fading correlation, therefore channel capacity, of a MIMO system that exploits

antenna pattern diversity is less affected by the scattering characteristics than that of

a MIMO system that exploits antenna spatial diversity. The ongoing research efforts

include the analysis of the proposed array structure with antenna mutual coupling

in a real propagation environment, and the capacity study of MIMO systems that

employ more transmit and receive antennas, where pattern diversity is exploited in

conjunction with spatial diversity.
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Chapter 7

Conclusions

7.1 Dissertation Summary

The main focus of this dissertation has been the development and application of

advanced array signal processing techniques to mobile broadband systems that have

practical implementation complexity and high performance. In particular, we have

focused on the characterization, modeling and prediction of fast fading vector chan-

nels, and have developed a series of new techniques for mobile broadband systems,

such as blind channel estimation, power control and adaptive beamforming. We

have also explored MIMO channels in non-ideal scattering environment, especially

MIMO systems that exploit antenna pattern diversity.

We have briefly described the wireless channels of adaptive antenna systems,

and discussed how the fast fading effect and the large delay spread of multipath

channels challenge the implementation of mobile broadband communications. In

fact, most of the current techniques of adaptive antenna systems have it as a premise

that the channel is time-invariant over an uplink/downlink frame, and the algorithm

complexity becomes unbearable when attempting to recover signals with receiving

delays spread over symbol periods.
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We have modeled the channel fading as an AR process, and verified the

validity of using models with low order in a scattering environment. In practice, not

all the AR model coefficients can be precisely estimated from a noisy signal. We have

exploited the redundancy of the fading characteristics, either in the channel transfer

functions at different frequencies, in the access channel and the traffic channel, or

in the signals received at multiple antennas, to obtain a better estimation of the

model coefficients. These solutions to channel estimation have paved the road for

the development of our joint wideband channel prediction, dynamic uplink power

control, and predictive downlink beamforming.

The uplink power control and the adaptive downlink beamforming, imple-

mented at the mobile site and the base station respectively, were both developed

in an effort to combat fast Rayleigh fading. The dynamic power control and the

predictive beamforming can track the channel variation within an uplink/downlink

frame, such that they are able to compensate the deep fades within a frame, pro-

vided the necessary hardware modifications. We have also exploited the subspace

of the spatial covariance matrix of received signals at the base station antennas.

The stability of the channel subspaces provides a platform to develop our subspace-

based beamforming algorithm against fast fading. This technique has overcome the

impairment of independent fading in uplink and downlink because of the negligible

distance between uplink and downlink subspaces in a practical FDD system, and it

can be implemented effectively without any feedback requirement.

Confronting the large delay spread of the wideband channel, we have pro-

posed a blind channel estimation algorithm, which can be combined with a RAKE

receiver. The algorithm is of low complexity, because the space-time structure of the

wideband channel helps to reduce the number of the unknown model parameters.

This dissertation has also been extended from vector channel study to matrix

channel study. The matrix channel is used to describe the wireless link of MIMO sys-
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tems. We have discussed the channel capacity of MIMO systems, and analyzed the

correlation between sub-channels, which imposes limitations on the linear capacity

increase promised by MIMO configuration. In the search for improved decorrelation,

we have included the antenna pattern diversity into the channel matrix. Through a

ray tracing simulator, we have compared the capacity increases in various scattering

environments. Finally, an antenna array that exploits pattern diversity has been

proposed for compact MIMO handheld terminals.

7.2 Primary Contributions

This dissertation has analyzed the mobile vector channels for broadband antenna

systems, and has consequently laid the foundation for the array signal processing of

broadband wireless communications. A series of new techniques for mobile broad-

band systems have been developed. The primary contributions of this dissertation

include:

1. Characterization of mobile broadband channels We study the mul-

tipath fading effect of mobile broadband channels. The delay spread and the

Doppler spread are investigated, which leads to the bridging of correlation

functions of a WSSUS channel model. We also explore the structure of broad-

band vector channels to simplify channel estimation algorithms.

2. Modeling and prediction of broadband vector channels We model

time-varying vector channels as low-order autoregressive (AR) processes. The

suitability of the AR model for the scattering radio channel is verified. We

predict the channel transfer function of the wideband system, as the prediction

coefficients are jointly found over the frequency band to reduce prediction

error.

3. An estimation algorithm of low complexity for broadband channels
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With careful study of the model constraints of the broadband channel, we

propose a blind estimation algorithm for the CDMA vector channel. This al-

gorithm alleviates the computational burden of the subspace-based estimation,

which is conventionally extensive. Therefore, it is favorable to be implemented

in any real-time systems.

4. A power control scheme for fast mobiles We propose an open-loop

dynamic power control scheme for the mobile unit. This uplink power control

enables the base station to receive constant signal power over a fast fading

channel. The power control relies on the channel prediction, which takes

advantage of the usage of access channel and traffic channel in the CDMA

protocol.

5. Adaptive beamforming to combat fast Rayleigh fading We propose

two adaptive beamforming approaches for mobile broadband communications.

Both of them can transmit desired downlink signals effectively despite the fast

Rayleigh fading effect. The first beamforming is based on the efficient vector

channel prediction. It can be directly implemented in time division duplex

(TDD) systems, and only needs moderate channel feedback if implemented in

frequency division duplex (FDD) systems. The second one is based on the

analysis of channel subspaces, and it can be directly implemented in both

TDD and FDD systems.

6. Verification of algorithms by ray tracing simulations We perform

simulations on the computer-aided design (CAD) models of propagation en-

vironments through a ray tracer, FASANT. The field parameters it provides,

which are much closer to reality than mathematical models, are mingled with

our communication channel representations to evaluate system performance

such as bit error rate (BER) and channel capacity.
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7. Channel modeling and capacity study of MIMO systems that exploit

antenna patter diversity We explore the MIMO wireless system that

exploits antenna pattern diversity, while studying the channel capacity and

its dependence on the scattering characteristics of a practical electromagnetic

surrounding. The pattern diversity is expressed in the channel transfer matrix

for a better capture of the system capacity.

8. Design of a MIMO handheld terminal with compact antenna array

Having characterized the fading correlation between sub-channels of a MIMO

system, we propose an array design for the handheld terminal that exploits

antenna pattern diversity. The antenna array consists of multiple collocated

antennas with dissimilar radiation patterns, such that the terminal remains its

compact size, whereas the generated pattern diversity guarantees large channel

capacity.

7.3 Future Research

Work continues on smart antenna systems and MIMO systems for mobile broad-

band communications. Although MIMO wireless systems have been extensively

studied due to its unique advantage for high-data-rate wireless communication, pre-

vious researches have been focused on the fixed MIMO wireless access, most of

which have been limited to narrowband channels. (The narrowband MIMO can still

achieve high data rate, thanks to the multi-carrier techniques such as orthogonal

frequency-division multiplexing (OFDM).) How to bridge the current techniques of

fixed MIMO and the rapidly growing demand for mobile broadband communications

will be an exciting research topic.

Future research may include issues pertinent to MIMO mobile cellular sys-

tems, with emphases on mobile broadband MIMO channel modeling, OFDM-based
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mobile broadband MIMO communications, and smart antenna mobile-assisted hand-

off of multi-cell MIMO systems. The multiplexing of MIMO systems that exploit

antenna pattern diversity and/or spatial diversity will be further explored. This

will involve space-time coding for MIMO fading channels, transceiver deployment

and compact antenna design. By analyzing characteristics of the propagation envi-

ronment, implementation algorithms will be developed for mode switching between

MIMO for diversity gain and MIMO for multiplexing gain, as well as algorithms for

tuning of adaptive modulation at different cell locations.

The study of wireless communication systems with high mobility can be

extended to the research on mobile Ad-hoc networks. Such network is composed

of mobile-to-mobile links only, but no fixed base stations. Therefore, the relative

speed of mobile units results in a wireless channel of even higher mobility.

Indoor measurement will be taken to support research on the MIMO wireless

data link and wireless networking. Outdoor vehicular measurement will be taken, or

computational electromagnetics used, to study the MIMO system with high mobility.
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Appendix A

Distance Between Uplink and

Downlink Subspaces

As a mobile communicates with a base station which has an M -element circular

array, the effective uplink channel subspace A(u) ⊆ CM and the effective downlink

channel subspace A(d) ⊆ CM are given by

A(u) = span{v(u)
1 ,v(u)

2 , . . . ,v(u)
L }

A(d) = span{v(d)
1 ,v(d)

2 , . . . ,v(d)
L } (A.1)

where

v(·)
i = [ej2πRf

(·)
c cos(θi)/C , ej2πRf

(·)
c cos(θi+2π/M)/C , · · · , ej2πRf

(·)
c cos(θi+2π(M−1)/M)/C ]T

i = 1, . . . , L

Suppose that rank(A(u)) = rank(A(d)) = L ≤ M . Let P (u) ∈ CM×M and P (d) ∈
CM×M be the orthogonal projections onto A(u) and A(d), respectively. For an ar-

bitrary unit-norm vector a(d) ∈ A(d), let a(u) = P (u)a(d) ∈ A(u). For the algorithm

developed in this paper, we want to show that the norm of a(u) is close to the norm

of a(d) in a practical FDD system. First we examine the case when L = 1. Let
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a(d) = αv(d)
1 , where α is a scaler. Since a(d) has unit norm, |α| = 1/

√
M . The

orthogonal projection onto A(u) is

P (u) =
v(u)

1 v(u)H
1

v(u)H
1 v(u)

1

=
1
M

v(u)
1 v(u)H

1 (A.2)

Therefore,

||a(u)|| = ||P (u)a(d)|| = |v(u)H
1 v(d)

1 |
M

||αv(u)
1 ||

=
1
M

∣∣∣∣∣
M−1∑

k=0

ej2πR∆fc cos(θ1+2πk/M)/C

∣∣∣∣∣ (A.3)

where ∆fc = f
(d)
c −f

(u)
c . At the PCS spectrum about 1.9 GHz, though the difference

of the two carriers can be as large as 10%, if the array radius R is only about half

wavelength of the carrier, R∆fc/C ≈ 0.05. Therefore the exponential terms in the

above sum are close to 1.

When L = 2, the unique orthogonal projection for each link is

P (·) =
v(·)

1 v(·)H
1 + v(·)

2 v(·)H
2 − βv(·)

1 v(·)H
2 − β∗v(·)

2 v(·)H
1

M(1− |β|2) (A.4)

where β = v
(·)H
1 v

(·)
2

M . The distance between subspaces A(u) and A(d) is defined by [76]

D(A(u),A(d)) = ||P (d) − P (u)||2 (A.5)

Therefore,

||a(u)|| = ||P (u)a(d)||

= (||a(d)||2 − ||(I − P (u))a(d)||22)
1
2

= (1− ||(P (d) − P (u))a(d)||22)
1
2

≥ (1− ||P (d) − P (u)||22 · ||a(d)||2) 1
2

= (1− ||P (d) − P (u)||22)
1
2

= (1−D2(A(u),A(d)))
1
2 (A.6)
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Figure A.1: Lower bound of ||P (u)a(d)||, L = 2.

Figure A.1 shows the lower bound of ||P (u)a(d)|| as θ1 and θ2 vary independently

in [0, 2π), where R = 0.085 m, f
(u)
c = 1.8 GHz and f

(d)
c = 2.0 GHz. The lower

bound is close to 1, which means the norm of the downlink channel vector projected

onto the effective uplink channel subspace is comparatively large. Notice that when

θ1 = θ2, it devolves to be the case of L = 1, where the lower bound of ||P (u)a(d)|| is

approximately 0.9686.
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Appendix B

Channel Representations of

FASANT Simulation

FASANT output file OUTPUT.OUT contains information of each individual inci-

dent ray at the observation points: the e-field contribution Ex, Ey, Ez, the path

length d, and the angles θ, φ of the direction of arrival (DOA). In our experiment

using dipole antennas with linear polarization, we only need Ez and azimuth angle

φ.

TOTAL.OUT shows the total field at each point. IPOINT.OUT contains

the information of the intermediate points of each ray, which is not of interest here.

Complex value Ez represents the phasor at each observation points, i.e.

Ez = −A e−j (2πfc
d
C

+ ψ) (B.1)

where, fc is the RF carrier frequency, d is the ray length from transmitter to re-

ceiver, ψ is the random phase change when the ray is reflected or diffracted by some

objects. (For line-of-sight rays, obviously ψ = 0). Real number A is the peak field

value, which decays when d increases. The negative sign on the right hand side

explains the fact that the Ez component at the transmission point heading down
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along the z axis due to the definition of θ.

Multipath Channel Model Assuming there are p rays impinging on the

receiver at a particular observation point. With transmitted signal s(t) being mod-

ulated to the carrier frequency fc as s(t)ej2πfct, the received signal is

x(t) =
p∑

k=1

E(k)
z ej 2πfct s(t− τk)

=
p∑

k=1

−Ak e−j (2πfc
dk
C

+ ψk) ej 2πfct s(t− τk) (B.2)

The baseband signal is therefore,

x(t) =
p∑

k=1

E(k)
z s(t− τk) (B.3)

Hence the channel

h(τ) =
p∑

k=1

αk δ(τ − τk) (B.4)

where, the complex amplitude αk = E
(k)
z is a function of fc. Note that with dif-

ferent carrier frequencies, the phase difference between two arriving rays at a fixed

observation point is different, i.e.

∆Ψij = 2πfc
dj − di

C
+ ψj − ψi

Doppler Spread and Time-varying Channel For a receiver moving with

velocity ~v, the Doppler frequency shift correspondent to one individual ray is

fd =
v cos(ϕ)

λ
=

v cos(ϕ)
C

fc (B.5)

where λ is the carrier wavelength. ϕ is the angle between ~v and the DOA of this

ray, which can be calculated from output azimuth angle φ. The baseband received
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signal at one particular observation point with instantaneous velocity ~v is therefore

x(t) =
p∑

k=1

E(k)
z ej 2πf

(k)
d t s(t− τk) (B.6)

Hence the time-varying channel

h(τ ; t) =
p∑

k=1

E(k)
z ej 2πf

(k)
d t δ(τ − τk) (B.7)

Finite Bandwidth Receiver Resolution For a finite bandwidth receiver, the

resolution of the arriving rays is limited. Multipath rays with close delays cluster

at the receive end and become indistinguishable in time, though they may have

different DOAs. Assuming there are L such clusters of all arriving rays, the channel

model can be well approximated as

h(τ ; t) =
L∑

l=1

βl(t) δ(τ − τl) (B.8)

where,

βl(t) =
pl∑

i=1

E(i)
z ej 2πf

(i)
d t (B.9)

We made the assumption that τi ≈ τl (i = 1, . . . , pl), which is validated by the

bandwidth limitation. With relatively large number pl, βl(t) expresses Rayleigh

distribution, or Ricean distribution if there is a strong line-of-sight.

Channel Representation Steps

1. Extract the z component of the e-field Ez, path length d, azimuth angle φ of

DOA of each ray at the observation point. RF carrier frequency is fc.

2. Derive path delay τk from path length dk. From (B.5), derive Doppler shift fd

of each ray from assumed velocity v, φ and fc.
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3. Obtain time-varying channel expression by (B.7). Note that the channel is

fc-dependent.

4. For narrowband signal, the delay difference is neglected. For wideband signal,

cluster close rays accordingly to exercise channel model (B.8).
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Appendix C

Received Signal at Patterned

Antenna

In order to derive the voltage on a receive antenna caused by the incident elec-

tromagnetic field, let us ignore the antenna scattering and consider two equivalent

problems of one receive antenna. One is to calculate the received voltage vi caused

by the incident field Ei,Hi, and the other is to generate the radiated field Er,Hr

excited by the current source Jr. By the Lorentz Reciprocity Theorem, we have

−
∮

S
(Ei ×Hr −Er ×Hi) · ds =

∫

V
(Ei · Jr −Er · Ji)dv (C.1)

Note that Ji = 0, the right side of (C.1) becomes
∫

V
Ei · Jrdv = Ir

∫

L
Ei · dl = Irvi (C.2)
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where, Ir is the current on the antenna. Therefore, the received voltage at the

antenna can be derived as

vi =
1
Ir

∮

S
(Er ×Hi −Ei ×Hr) · r̂ds

=
1
Ir

∮

S
(Er × 1

η
(−r̂×Ei)−Ei × 1

η
(r̂×Er)) · r̂ds

=
1

ηIr

∮

S
[−(Er ·Ei)r̂ + (r̂ ·Ei)Er − (Ei ·Er)r̂ + (r̂ ·Er)Ei] · r̂ds

= − 2
ηIr

∮

S
(Ei ·Er)ds (C.3)

Perform the integration on the spherical surface with radius R, where the receive

antenna is at the center of the sphere. R is large enough such that the antenna

far-field assumption is valid. Suppose the antenna has an effective receiving area

ds0 seen from all arriving angles. Therefore, for the mth ray arriving at the receive

antenna with path length is lm, the receiving area on the integral surface is dsm =
lm−R

lm
ds0. Therefore, we can express the integration by a summation as

vi ∝
M∑

m=1

Ẽm
i · Ẽm

r dsm

=
M∑

m=1

lm
lm −R

Em
i ejk0R · 1

R
Fr(θm, φm)e−jk0Rdsm

=
M∑

m=1

Em
i · Fr(θm, φm)

ds0

R
(C.4)

where Ẽm
i and Ẽm

r denote the fields on the integral sphere with radius R. With

normalization, this leads to the relationship between the voltage on the receive

antenna and the incident field as expressed in (6.11).
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Appendix D

Rotation of Antenna Radiation

Pattern in 3D Cartesian

Coordinate System

Two 3D-vectors p and p′, p′ is obtained from p by the Euler rotation angles [α, β, γ]

about “X then Y then Z”, then a (unitary) rotation matrix R may represent the

rotation:

p′ = Rp (D.1)

where,

R =




cos(γ) cos(β) − cos(β) sin(γ) sin(β)

cos(α) sin(γ) + cos(γ) sin(β) sin(α) cos(γ) cos(α)− sin(γ) sin(β) sin(α) − cos(β) sin(α)

− cos(γ) cos(α) sin(β) + sin(γ) sin(α) cos(γ) sin(α) + sin(γ) sin(β) cos(α) cos(β) cos(α)




The rotation of the vector is equivalent to the rotation of the Cartesian coordinates

(with opposite direction) as shown in Figure D.1. Suppose the radiation pattern at

point p due to the antenna in original position 1 is E1. E1 is given by

E1 = Ax(x, y, z)x̂ + Ay(x, y, z)ŷ + Az(x, y, z)ẑ (D.2)
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Figure D.1: Rotation of the antenna radiation pattern

When the antenna is rotated to position 2, or equivalently the Cartesian axes are

rotated to (x′, y′, z′), the radiation pattern at point p is E2. E2 in the (x′, y′, z′)

coordinate system is given by

E2 = Ax(x′, y′, z′)x̂′ + Ay(x′, y′, z′)ŷ′ + Az(x′, y′, z′)ẑ′ (D.3)

where 


x′

y′

z′


 = R




x

y

z


 (D.4)
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To be expressed in the (x, y, z) coordinate system, this pattern vector is again rotated

back by 


Ex

Ey

Ez


 = R−1




Ax(x′, y′, z′)

Ay(x′, y′, z′)

Az(x′, y′, z′)


 (D.5)

Finally, we have the radiation pattern of the rotated antenna (in position 2). The

field component at point p is given by

E2 = Ex(x, y, z)x̂ + Ey(x, y, z)ŷ + Ez(x, y, z)ẑ (D.6)
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