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A complementary set of tutorial overview and survey 
articles demonstrating the importance of incorporat-
ing signal processing strategies into the advances in 
neuroimaging techniques, data analytics, and mod-
eling for brain function is presented in this issue of 
IEEE Signal Processing Magazine. This cluster of 
feature articles showcases the inherently interdisci-
plinary nature of brain mapping research and the 
intriguing signal processing questions.
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Min Wu  |  Editor-in-Chief  |  minwu@umd.edu

FROM THE EDITOR

Silk Road in the New Millennium

Iam writing this editorial just days before 
heading to Shanghai, China, to attend 
ICASSP 2016. This is the first time that 

the IEEE Signal Processing Society 
(SPS) has held its flagship conference, 
the 41st in the series, in Mainland China. 
ICIP will follow the footsteps of 
ICASSP and be held in Beijing, the capi-
tal city of China, in September 2017. 
And, for the first time, ICASSP will be 
held in South Korea, in 2018. In a sense, 
major SPS conferences are paving the 
way for the SPS to develop a strong pres-
ence in Asia and encourage engagement 
between communities in the East and the 
West, playing a role of what the Silk 
Road once achieved.

For colleagues in North America 
and Europe, traveling to conferences in 
Asia often takes nearly a whole day. 
When we frown about the long travels 
for these major conferences increasing-
ly being held in Asia, have we thought 
about when the tables were turned? 
Colleagues from Asia (as well as such 
regions as Australia, New Zealand, and 
South America) have had to travel that 
far for the vast majority of past confer-
ences that were held in North America 
or Europe!

Growing up in China, Asia is 
undoubtedly special to me. Emotional 
attachment aside, we have seen a rapid 
growth of SPS membership and our 
magazine’s readership in Asia, now 
accounting for nearly 30% of total SPS 
mem  bers. I want to share with you what I 
recently learned from two efforts related 

to Asia, as they brought enlightening 
thoughts about the spectrum of future 
SPS activities and magazine contents.

The first event in my ICASSP trip is to 
organize the final competition of this 
year’s IEEE Signal Processing Cup 
(SP Cup) global competitions. The SP 
Cup provides undergraduate students with 
an opportunity to form teams and work 
together to solve a challenging and inter-
esting real-world problem using signal 
processing methods. SP Cup 2016 has 
seen participations from 28 countries, cov-
ering every habitable continent. For three 
years in a row, we have seen enthusiastic 
involvement of undergraduate students 
from Asia. Not only are more than half of 
the team submissions in 2016 from Asia, 
but at least two out of three finalists in 
each SP Cup so far came from Asia. 

The second effort I’d like to share 
addresses a traditional conference 
model that has focused on publishing 
the latest original research work. With 
its selective nature on paper acceptance 
as well as a nontrivial registration fee, 
attendees would be limited to primarily 
researchers and doctoral students in 
well-funded research institutions. But 
last summer, I learned of a grassroots 
effort by an enthusiastic group of mid-
career Chinese colleagues. They initiat-
ed an annual gathering of Vision and 
Learning Seminars (VALSE), which 
aims to help researchers, practitioners, 
and graduate students in China acquire 
the latest knowledge and elevate the 
overall technical levels. To lower the 
engagement barrier, VALSE is free to 
attend and uses local language in oral 
communications; to reduce overhead 

and seek to complement, instead of 
compete for papers with highly estab-
lished conferences, VALSE does not 
have submission of new papers, and 
instead the focus is on invited talks by 
active researchers and rising stars and 
highlights of recently accepted papers 
in major journals and conferences. 
Within just six years, VALSE has ener-
gized the computer vision community 
in China and attracted more than 1,000 
participants and numerous industry 
sponsors. It also utilizes social and 
online platforms to engage people at 
different career stages and is extending 
its activities to provide webinars and 
learning resources throughout the year. 

Seeing the encouraging responses 
toward these activity models, I wonder: 
can a new model of community learning 
in a geographic region address what’s 
missing between traditional research con-
ferences and one-time local Chapter 
events? Will the SP Cup complement the 
traditional classroom learning and con-
nect signal processing students around 
the world to develop a global communi-
ty? IEEE Signal Processing Magazine 
has technical readership spanning broad 
backgrounds and needs, so what can we 
learn from the enthusiastic responses of 
undergraduate and professionals in Asia 
toward these events? Perhaps insights on 
these questions will shine a light on this 
modern-times Silk Road between the 
East and the West for the signal process-
ing community.  
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PRESIDENT’S MESSAGE
Rabab Ward  |  SPS President |  rababw@ece.ubc.ca 

The Meaning of (the Signal Processing) Life

W  hen I told a friend of mine that 
I’d soon be starting my term as 
president of the IEEE Signal Pro-

cessing Society (SPS), she gave me a 
look that’s probably familiar to many of 
you—“What is that, and why should I
care?” Two great questions from the 
uninitiated that underscored the impor-
tance of our efforts these past two years 
in raising awareness about signal pro-
cessing (SP) among the general public. 
To help identify new methods for 
increasing our visibility over the next two 
years, I took a few steps back and had a 
fresh look at the definition and purpose 
of our chosen field, by reading the 
“Scope/Mission” section of our webpage. 

After defining what SP is, the mis-
sion statement addresses the “Why 
should I care” question: “… signal 
 pro cessing is a core technology for 
 ad  dressing critical societal challenges 
that include healthcare, energy systems, 
sustainability, transportation, entertain-
ment, education, communication, col-
laboration, defense, and security.” In 
simple terms, SP impacts all facets of 
life, and it’s uniquely positioned to solve 
a wide array of “social challenges” by 
“enabling technology for the generation, 
transformation, and interpretation of 
information” in a broad variety of disci-
plines. Those are some very important 
reasons why my friends and society at 
large should care about SPS.

How does the SPS go about reaching 
that goal? Our mission statement 
asserts that we will “advance and dis-
seminate state-of-the-art scientific 
information and resources; educate 
the signal processing community; and 
provide a venue for people to interact 
and ex  change ideas.” I’d like to share 
some of my own strategies for ful-
filling our  mission statement and 
growing the scope of our Society 
 during my two-year 
 tenure. Your input is 
critical and most wel-
come. Meanwhile, 
I’ve  identified five key 
objectives.

First, I’d like to 
engage a broader pool 
of members. The SPS 
is built on the efforts 
of hundreds of dedi-
cated volunteers. Yet, as our member-
ship numbers grow, the needs of our 
community expands, and the reach or 
our disciplines evolves, the importance 
of engaging committed volunteers 
increases exponentially. We need vol-
unteers to make our initiatives happen, 
and we need to continuously define and 
refine our next steps. Given our inter-
national nature, we must rely on our 
conferences and publications but more 
so on our networking channels, specifi-
cally our regional Chapters. To engage 
all of our members from around the 
globe, we must pay special attention to 
growing and nurturing our worldwide 

membership and its roots among the 
local Chapters.

The voices of our young members 
are particularly important for the health 
and longevity of our Society. They are 
savvy to social media and are uniquely 
positioned to engage with other young 
colleagues and spearhead innovative 
campaigns that will tap into a wider 
demographic and a global audience. 
One idea to drum up interest among 

young signal proces-
sors could be a com-
petition for members 
to produce a 1-min 
video about what the 
SPS should look like 
in ten years. 

Our young mem-
bers play a key role 
in helping us reach 
another important 

goal: raising SP awareness to attract 
young innovative minds to the SPS. 
This will also help secure our Society’s 
future and raise our profile with a 
demographic that is uniquely attracted 
to idealistic social causes—a perfect fit 
for the goal of solving social challeng-
es. Outreach to students and young 
 professionals is critical, and mentor-
ships can benefit both established and 
fledgling practitioners. It’s our responsi-
bility to ensure that young minds 
around the world understand what SP is 
about. It’s our responsibility  to provide 
all  members—especially young  people—
the insights and tools so that they can 

Digital Object Identifier 10.1109/MSP.2016.2525498
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To engage all of our 
members from around 
the globe, we must pay 
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worldwide membership 
and its roots among the 
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learn more about SP. Once we pique 
interest, we must support and empower 
these young people to carve a profes-
sional path and make their own contri-
butions to benefit the field and society 
at large. This underscores the necessity 
that our Society provides continuing 
education to our SPS members—a new 
effort that SPS is now taking serious 
steps to address.

Another goal is to enhance the 
SPS’s value for current and potential 
members. I’d like to go above and 
beyond our current services, which 
include our highly respected conferenc-
es and workshops, our newsletter, and 
our highly acclaimed magazine and 
publications. We should also include 
the needs of potential members in our 
planning. Our SP community is much 
larger than twice the number of our 
members, encompassing nonmembers 
who attend our conferences, follow our 
publications, author articles in our jour-
nals, etc. Identifying these nonmem-
bers and assessing and meeting their 
needs should be a future priority. 

The SPS has already started sever-
al great initiatives to provide services 
to members and to the SP community 
at large. SigPort and SigView are two 
such great initiatives. SigPort allows 
researchers to post and archive their 
manuscripts, reports, theses, and sup-
porting materials. We must assess the 
utility of this system and find out 
from members how to make it more 
valuable to all of our authors. For 
example, how can we kick-start a 
lively comments section alongside our 
members’ published papers? Can it be 
more interactive? Is “crowd review-
ing” possible? Is it useful? SigView is 
already attracting the interest of grad-
uate students and practitioners. We 
need to hear from users regarding 
ways that we can build on its current 
success to further serve their needs 
and expand the circle of benefits. 
We’ve launched such initiatives, so 
let’s monitor and assess them on a 
continual basis, fine-tuning them as 
necessary to ensure their value, suc-
cess, and user friendliness.

We already have a few platforms 
in place that could stimulate interest 

among young people.  Sum mer 
schools are one such venue.  Another 
medium is our very successful out-
reach: IEEE Signal Processing Maga-
zine. Should we use it to reach a 
wider audience, beyond our commu-
nities, as IEEE Spectrum has already 
done? Is the use of social media chan-
nels and our website the most effec-
tive way to interact with our members 
and to reach a broader audience? The 
Student Cup is  proving to be a very 
power ful  tool  to 
engage young stu-
dents in SP. What 
are the best approach-
es to define challeng-
es for the Cup that 
would at  tract even a 
much wider pool of 
pa r t ic ipa nt s  a nd 
inspire them to find innovative solu-
tions? What would it take for the 
Student Cup to become the premier 
“filter” to identify SP future leaders? 
Can students help educate others, per-
haps by creating and publishing “SP for 
Dummies”-style videos?

Another priority is to create a cul-
ture of meaningful pa r tnership 
between academic and industrial SP 
communities. It’s an ideal way for us 
to reach our stated goal of harnessing 
SP as an enabling technology to 
address society’s critical challenges. 
We have a much better opportunity 
to meet this goal with mutually 
beneficial partnerships between the 
innovators at the cutting edge and the 
industries and organizations with 
first-hand knowledge and under-
standing of these social issues and 
challenges. We’ve done a lot of talk-
ing about the need to build bridges. 
Let’s start making these partnerships 
happen. The SPS’s Chapters, con-
ferences, and technical committees 
are in an ideal position to reach out 
to  industry and ensure ongoing 
dialogues so that industry can share 
its var ious needs and goals and 
researchers can share their recent 
discoveries and novel ideas—a colla-
borative process that will motivate 
and  benefit everyone. This will also 
enhance the magazine’s efforts in 

becoming an even more powerful mec-
hanism of communication between 
researchers and practitioners.

My fifth goal for the SPS is to 
improve the administrative and financial 
efficiency of the Society. As we continue 
to strategize methods for adding value to 
our core mission initiatives, we must 
ensure that we have a reliable, efficient, 
transparent infrastructure supporting 
our operations. This includes ongoing 
improvement of our online presence 

(including smart-
phone applications 
and other mecha-
nisms for continuous 
member feedback), 
controlling and re -
ducing our publica-
tion costs, preparing 
solutions to counter-

act possible impact on our finances from 
open access and alternative publishing 
ar  chives, and, last but not least, con -
tinuing to be the best custodians of all 
our financial affairs.

Each and every one of the afore-
mentioned initiatives builds on the 
contributions of previous SPS staff 
and volunteers, and they cannot be 
fulfilled without the continued efforts 
of our various committees, including 
our technical committees, our various 
boards, including our Board of Gover-
nors, our Society officers, and current 
staff and volunteers. I am genuinely 
grateful to my predecessors for hav-
ing left the Society in great shape. I 
am also grateful to all of the volun-
teers for their dedication and commit-
ment. I’m ever-mindful of the fact 
that SPS will only grow through the 
direct engagement of its members. We 
on the governing boards are commit-
ted to doing our best, but we need you 
with us to help us ensure that SPS 
provides the greatest value to its 
members, to the field of SP, and to the 
public. I know that together we can 
address and solve the Society’s criti-
cal challenges. 

SP

The SPS has already 
started several great 
initiatives to provide 
services to members 
and to the SP community 
at large.
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READER’S CHOICE

Top Downloads in IEEE Xplore

T he “Reader’s Choice” column 
focuses on a different publication of 
the IEEE Signal Processing Society. 

This month we are highlighting articles 
from IEEE/ACM Transactions on 
Audio, Speech, and Language Process-
ing, which covers audio, speech and 
language processing and the sciences 
that support them. The “word cloud” 
image in this column shows the concen-
tration of topics used in the titles of the 
most downloaded papers over the past 
year weighted by the number of months 
the article was a top download. The 
three broad topics of the title of this 
journal are expanded as transducers, 
room acoustics, active sound control, 
human audition, analysis/synthesis/cod-
ing of music, and consumer audio; 
speech analysis, synthesis, coding, 
speech recognition, speaker recognition, 
speech production, and perception and 
speech enhancement; and speech under-
standing, spoken language dialog sys-
tems, translation, summarization and 
document retrieval, as well as general 
language modeling.

This issue’s “Reader’s Choice” col-
umn lists the top ten papers most 
downloaded for the past year at the 
time of the print deadline. Download 
statistics can be found in the supple-
mentary document on the SigPort 
repository (http://sigport.org/),where 
we have included inset graphs to show 

the downloads for each month of the 
previous year and show if the article is 
a steady performer, a brilliant flash, a 
past glory, or a rising star. Your sugges-
tions and comments are welcome and 
should be sent to Associate Editor 
Michael Gormish (gormish@ieee.org).

Automatic Expressive Opinion 
Sentence Generation for Enjoyable 
Conversational Systems
Matsuyama, Y.; Saito, A.; Fujie, S.; 
Kobayashi, T.
Rather than returning the minimum 
required information in a conversation, 
the authors generate sentences with 
automatically gathered opinions and 

novel means of expression. This sen-
tence generation is tested in conversa-
tions between robots and humans and 
is found to promote human interest.

February 2015

Convolutional Neural Networks 
for Speech Recognition
Abdel-Hamid, O.; Mohamed, A.-R.; 
Jiang, H.; Deng, L.; Penn, G.; Yu, D. 
This paper improves on hybrid deep 
neural network-hidden Markov model 
with a convolutional neural network 
(CNN). Features of CNNs including 
weight sharing and pooling provide 
invariance to speech sifts along the 
frequency axis. Up to a 10% error 

Digital Object Identifier 10.1109/MSP.2016.2530629
Date of publication: 27 April 2016
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rate  reduction is shown for phone 
recognition and large vocabulary 
voice search.

October 2014

Robust Sound Event Classification 
Using Deep Neural Networks
McLoughlin, I.; Zhang, H.; Xie, Z.; 
Song, Y.; Xiao, W.
This paper outlines a sound event clas-
sification framework that compares 
auditory image front end features with 
spectrogram image-based front-end 
features, using a support vector ma -
chine and deep neural network classifi-
ers. Performance is evaluated on a 
standard robust classification task in 
different levels of corrupt  ing noise, 
and with several system enhancements.

March 2015

Keyword Extraction and 
Clustering for Document 
Recommendation in Conversations
Habibi, M.; Popescu-Belis, A.
The authors extract key words from an 
automatic speech recognition system 
and use a topic model that favors 
diversity in the key word set and derive 
topicaly separated queries to run on 
Wikipedia. It attempts to maximize the 
probability of making at least one rele-
vant recognition. Testing with human 
judges shows improvement over word 
frequency or topic similarity methods.

April 2015

A Regression Approach to Speech 
Enhancement Based on
Deep Neural Networks
Xu, Y.; Du, J.; Dai, L.-R.; Lee, C.-H.
This paper finds a map from a noisy 
speech signal to a clean one using 
deep neural networks. Dropout and 
noise-aware training strategies lead to 
robust performance to highly nonsta-
tionary noise.

January 2015

From Feedforward to Recurrent 
LSTM Neural Networks for 
Language Modeling
Sundermeyer; M.; Ney, H.; 
Schluter, R.
This paper compares count models 
to feedforward, recurrent, and long 

short-term memory neural network 
variants on two large-vocabulary 
speech recognition tasks. The in -
creased computational complexity 
requires efficient search methods for 
the neural networks. Performance is 
evaluated in terms of perplexity and 
word error rate.

March 2015

Sentence Compression for
Aspect-Based Sentiment Analysis
Che, W.; Zhao, Y.; Guo, H.; Su, Z.; Liu, T.
The method described in this paper 
compresses sentences by 
removing information 
unrelated to sentiment 
using a conditional ran-
dom field model. The 
shorter sentences are 
easier to parse allowing 
fine-grained aspect-based 
sentiment analysis.

December 2015

An Overview of Noise-Robust 
Automatic Speech
Recognition
Li, J.; Deng, L.; Gong, Y.; 
Haeb-Umbach, R.
This paper provides a thorough over-
view of modern noise-robust techniques 
for ASR developed over the past 30 
years. Noise robust techniques are 
analyzed using five criteria: 1) feature-
domain versus model-domain pro-
cessing, 2) the use of prior knowledge 
about the acoustic environment distor-
tion, 3) the use of explicit environment-
distortion models, 4) deterministic 
versus uncertainty processing, and 5) the 

use of acoustic models trained jointly 
with the same feature enhancement or 
model adaptation process used in the 
testing stage.

April 2014

Single Frequency Filtering 
Approach for Discriminating 
Speech and Nonspeech
Aneeja, G.; Yegnanarayana, B.
The mean and variance of the noise-
compensated weighted envelopes are 
computed across frequency at each time 
instant. Because the variance of the 
spectral information across frequency is 

higher for speech 
and lower for many 
types of noises, the 
method obtains bet-
ter  performance 
than adaptive multi-
rate VAD2.

April 2015

Voice Conversion Using RNN  
Pre-Trained by Recurrent Temporal 
Restricted Boltzmann Machines
Nakashika, T.; Takiguchi, T.; Ariki, Y.
This paper converts voices using one 
recurrent temporal restricted Bolt -
zmann machine for the source and 
one for the destination speaker to 
convert both speaker signals to the 
model parameters, then a neural net-
work to convert between the models’ 
parameters. This method compares 
favorably with Gaussian mixture 
model methods.

March 2015

SP
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SPECIAL REPORTS
John Edwards

1053-5888/16©2016IEEE

Signal Processing Helps Put Robot Users in Control

According to BI Intelligence, the 
global robotics market—long domi-
nated by industrial and logistics 

uses—is finally beginning to see a shift 
toward consumer and office applications. 
There will be a US$1.5 billion market 
for consumer and business robots by 
2019, predicts the technology market 
research firm, headquartered in London.

Another technology research organi-
zation, Juniper Research, expects that 
more than one in ten U.S. households 
will own a consumer robot by the end 
of the decade, up from fewer than one 
in 25 in 2015, primarily “task-oriented” 
robots assigned to take over household 
chores, such as lawn mowing or vacu-
um cleaning.

According to Juniper Research, 
located in Basingstoke, Hampshire, 
England, devices such as iRobot’s 
Roomba robot vacuum and Droplet 
Robotics’ Sprinkler, already help make 
life more convenient for consumers and, 
despite design compromises, are likely 
to usher in a new era of housekeeping.

Yet, before businesses and consum-
ers can begin routinely using robots 
capable of handling even more complex 
tasks, a new generation of easy and 
intuitive control methodologies will 
have to be designed, tested, and imple-
mented. Prospective users will also have 
to be convinced that robot controls are 
both reliable and safe. This will not be 
easy, however, in light of the fact that 
even as software algorithms continue to 
improve, user mistrust remains high.

A 2014 University of Pennsylvania 
study demonstrated that software is 

given little room for error by users 
before trust is seriously eroded  [1]. In 
fact, the study concluded that humans 
naturally tend to place more trust in 
another human’s judgment, even when 
an algorithm is shown to outperform its 
flesh and blood counterpart.

“It just works” was a slogan promot-
ed by Apple several years ago in an 
effort to convince skeptical Windows 
PC users to switch to the company’s 
purportedly simpler and easier to use 
Macintosh computer. Robot-control 
developers are now taking that same 
catch phrase to heart as they develop 
and refine promising new ways of mak-
ing robots follow their users’ instruc-
tions quickly, obediently, and faithfully.

Thought control
Simple, intuitive robot control is essential 
for people who depend on robotic-enabled 
assistive devices, such as wheelchairs 
and performance-enhancing exoskeletons. 
A team of researchers 
at Ecole Polytech-
nique Fédérale de 
Lausanne’s Defitech 
Foundation Chair in 
Brain-Machine Inter-
faces are focusing on 
a revolutionary brain-
machine approach 
with the goal of re -
storing a sense of 
independence to the 
disabled. The researchers are working 
on a technology that would allow 
users to remotely control a robot with 
one’s thoughts.

“Our work focuses on the design of 
neuroprostheses—robots and exoskele-

tons that human users control directly 
by voluntarily modulating their brain 
activity,” says research leader José del 
R. Millán. “At the core of these neuro-
prostheses, there is a brain-computer 
interface (BCI), a system that records 
neural signals and decodes them in 
order to transform the user’s intention 
into appropriate commands to operate 
practical devices for motor-disabled 
people such as wheelchairs, telepres-
ence robots, hand and lower-limb exo-
skeletons” (Figure 1).

An important aspect of a BCI is the 
capability to distinguish between differ-
ent patterns of brain activity, with each 
being associated with a particular inten-
tion or mental task. “Adaptation is a key 
component of a BCI because, on the one 
hand, users must learn to modulate their 
neural activity to generate distinct brain 
patterns while, on the other hand, 
machine-learning techniques need to 
discover the individual brain patterns 

characterizing the 
user’s intention,” Mil-
lán says. “In essence, 
a BCI is a two-learn-
er system that must 
engage in a mutual 
adaptation process.”

Millán says that 
the researchers are 
focusing their atten-
tion on electrical 
brain signals origi-

nating directly from neuron activity, 
since their high temporal resolution is 
suitable for operating robotic devices in 
real time. “Brain signals for a BCI can 
be recorded from single neurons, using 
microelectrode arrays implanted in the 

Digital Object Identifier 10.1109/MSP.2016.2525438
Date of publication: 27 April 2016

Simple, intuitive robot 
control is essential for 
people who depend 
on robotic-enabled 
assistive devices, such 
as wheelchairs and 
performance-enhancing
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brain, or as the concerted activity of 
neuronal populations of different sizes, 
depending on the position of the elec-
trodes—either implanted in the brain, 
on the surface of the brain or outside 
the scalp.” He notes that a combination 
of these approaches may be necessary 
to achieve the ultimate goal of control-
ling a neuroprosthesis as easily and 
precisely as able-bodied people control 
their natural limbs.

In tests involving nine disabled and 
ten healthy people in Italy, Germany, 
and Switzerland, participants wore an 
electrode-studded hat that detected their 
brain signals. The individuals then 
instructed a robot to move in various 
ways. “Each of the nine subjects with 
disabilities managed to remotely con-
trol the robot with ease after fewer than 
ten days of training,” Millán says. The 
tests ultimately revealed no difference 
in piloting ability between healthy and 
disabled participants.

The researchers also believe that at 
least some degree of robot autonomy 
should be available to supplement and 
complement user control. A robotic 
mobility device, for example, should be 
able to avoid obstacles by itself, even 
when it is not told to, Millán notes. To 
avoid becoming overly tired, the user 
should be able to take a break from giv-
ing instructions, allowing the robot to 
continue on its current path until it 
receives an order to stop or change 
course. “In this way, control over the 
robot is shared between the human and 
the computer, allowing the pilot to rest 
while navigating,” Millán says.

Signal processing is a critical compo-
nent in several areas of BCI research. 
“The first is to increase the signal-to-
noise ratio of the recorded signals, which 
have very low amplitude on the order of 
microvolts,” Millán says. “Typical tools 
at this stage are filtering in the frequency 
and spatial domain, as we record from 
many electrodes at a relatively high sam-
pling rate.” Signal processing also helps 
to extract features that may reflect differ-
ent neuronal processes, each associated 
to an aspect of the user’s intent. “For 
instance, imagination and execution of a 
movement gives rise to rhythmic activity 
in different frequencies in the sensorimo-

tor cortex of the corresponding body 
part,” Millán explains. “Out of many 
potential candidates, machine-learning 
techniques select those features that 
improve decoding.”

Millán says that one of the biggest 
signal processing-related challenges that 
researchers face is the intrinsic variabili-
ty of brain signals, which makes it diffi-
cult to decode a user’s intentions from 
within a short time window. “We deal 
with this issue by using statistical 
approaches that combine evidence accu-
mulated over time to robustify the final 
decision,” he says.

Millán is confident that the BCI will 
ultimately be used by robotic mobility 
system manufacturers worldwide, but 
not for at least several more years. “It 
will require large trials to demonstrate 
the robustness and reliability of the tech-
nology,” he says. “This is not only time-
consuming, but will also require 
substantial financial resources to cover all 
the necessary personnel to run the trials.”

Finger control
Researchers at the Georgia Institute of 
Technology (Georgia Tech) believe that 
businesses and consumers will soon 
have the ability to control entire fleets 

of robots with just the flick of a finger. 
Their new tablet-based system is 
designed to be used by almost anyone, 
including people with no technical 
training. To make a swarm of robots do 
his or her bidding, the user simply taps 
the tablet display to control where a 
beam of red light appears on a floor. 
The robots then will then move toward 
the illuminated area, constantly com-
municating with each other and decid-
ing how to evenly cover the lit space. 

If the user swipes a finger across the 
tablet display to drag the light across the 
floor, the robots will obediently follow. 
If the operator places two fingers in dif-
ferent locations on the tablet, the robots 
will begin splitting into teams and repeat 
the even-covering process within the 
two specified areas. “Basically the 
robots move around so as to balance 
how much light they are responsible for 
in the sense that they should end up with 
the same amount of light in the different 
areas of responsibility,” says Magnus 
Egerstedt, Schlumberger Professor in 
Georgia Tech’s School of Electrical and 
Computer Engineering (Figure 2).

“A few years ago, we ran user studies 
in the lab and found that people were 
generally quite bad at controlling large 

FIGURE 1. A robotic wheelchair equipped with a BCI that records neural signals and decodes them in 
order to transform user’s intentions into appropriate commands. (Photo courtesy of Ecole Polytech-
nique Fédérale de Lausanne’s Defitech Foundation Chair in Brain-Machine Interfaces.)
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teams,” Egerstedt says. “So we started 
looking for easier ways of giving people 
control over large teams and the result 
was the tablet interface, which allows 
human operators to simply swipe desired 
shapes on the tablet and then have the 
robots respond accordingly.”

The new algorithm promises easy 
control over large teams of robots, even 
by a single operator, in applications 
such as manufacturing, agriculture and 
search and rescue, Egerstedt says. “The 
core algorithms behind this technology 
make robots move around in a distrib-
uted manner by only paying attention 
to neighboring robots,” he explains. 

“For this to work, the robots need to 
measure not only their own positions, 
but also where other robots are relative 
to themselves.”

Signal processing lies at the heart of 
the system. “This requires a lot of signal 
processing in that the robots must make 
sense of noisy and sometimes intermit-
tent sensor measurements,” Egerstedt 
says. “The sensor measurements are 
both sampled and filtered for smooth-
ness, so sampling and filtering are key.”

The Georgia Tech model differs 
from most other robotic coverage algo-
rithms in that it is not static. “It is flexi-
ble enough to allow robots to change 

their minds effectively, rather than just 
performing the single job they’re pro-
grammed to do,” Egerstedt says.

Inside a lab, the robots can easily 
measure light intensities. Yet relying on 
light beams is hardly practical out on a 
farm field or in a disaster area. “What 
the light is really representing is areas 
of interest—the more light there is, 
the more interesting stuff there is,” 
Egerstedt says. “This is called a density 
function and, when deployed, we are 
envisioning that the tablet simply com-
municates what the density function 
looks like to the robots and they then 
execute the same algorithm without the 
need to actually measure any light.” 

Egerstedt says that one of the biggest 
challenges his team has encountered so 
far is a multitarget matching problem—
keeping track of which signal corre-
sponds to which robot. “This has really 
given us the most headaches from a sig-
nal processing point of view,” he states.

“Technically, what the robots are 
doing is solving a ‘dynamic coverage 
problem,’ which is the name we use 
for the technology when we publish 
papers or give technical talks about 
it,” Egerstedt says. The project began 
in January 2014. “We have no firm 
end date; we will keep going until we 
have found the perfect solution,” 
Egerstedt adds.

Complex collaboration
One of the biggest challenges develop-
ers face as they attempt to get robots to 
work together is the fact that the human 
world is packed with uncertainty. A 
new robot management system devel-
oped by researchers at the Massachu-
setts Institute of Technology’s (MIT’s) 
Computer Science and Artificial Intelli-
gence Laboratory (CSAIL) combines 
existing control programs to enable 
multiagent systems, such as teams or 
swarms of robots, to collaborate effec-
tively and reliably in a variety of com-
plex ways, whether they are working in 
a warehouse, searching earthquake rub-
ble for survivors, or flying through the 
air delivering packages to homes.

According to Jonathan P. How, the 
Richard Cockburn Maclaurin Professor 
of Aeronautics and Astronautics at MIT, 

FIGURE 2. Magnus Egerstedt, a professor in Georgia Tech’s School of Electrical and Computer En-
gineering, with some of the robots he is using in his research into controlling swarms of machines 
that coordinate their own activities to accomplish tasks. (Photo courtesy of Georgia Tech’s School of 
Electrical and Computer Engineering/Rob Felt.) 
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the new system factors in uncertain-
ty, such as a communication link will 
suddenly drop or that a specific algo-
rithm will unintentionally direct a 
robot into a wall or other type of 
dead end, and automatically plan 
around such a situation occurring. 
“What the technology solves is the 
problem of how to get agents to 
work together when communications 
is an issue,” says How, who devel-
oped the system with student Chris 
Maynor. “The project goal is to find 
decision-making algorithms that can 
solve the problem and then decide 
which agent should do what and 
when it should do it,” How says.

As the project moved forward, the 
researchers decided that it was important 
to have robots to view specific tasks in 
much the way people do. Humans, after 
all, do not have to think about every sin-
gle footstep they take. Through experi-
ence, such actions gradually become 
second nature. With this concept in 
mind, the team programmed the robots 
to perform a series of “macro-actions” 
broken down into multiple steps.

The new approach uses three major 
components, beginning with a collection 
of low-level control algorithms—the 
macro-actions that govern robot behav-
iors either collectively or individually. 
The system also uses a set of statistics 
that cover the algorithms’ execution—
decision making—in specific situations. 
The third part of the system is a method 
that assigns values to various outcomes 
(successfully completing a task gener-
ates a high positive valuation while 
excessive energy use would lead to a 
negative valuation).

To demonstrate their system, CSAIL 
researchers temporarily converted their 
lab into a miniature lounge featuring a 
PR2 robot “bartender” (Figure 3) and a 
pair of four-wheeled Turtlebot robots 
that rolled into nearby offices and 
retrieved drink orders from the human 
occupants. The Turtlebots then reasoned 
about which orders were required in the 
 different rooms and whether or not 
other robots may have already delivered 
the drinks.

“There are a lot of big challenges 
with planning any type of communica-

tion network,” How says. “To be honest, 
it has been very tough getting informa-
tion flowing in a reasonable fashion in 
terms of speed and time.” He notes that, 
in real-world domains, such as on busy 
streets, inside buildings, or on treacher-
ous natural landscapes, communication 

noise and uncertainty about what is 
happening makes it hard for robots 
to make decisions. “Getting clean 
information from one agent to anoth-
er, and having them understand 
what’s received and process it, that is 
what we are seeking,” How says.

“There’s a bunch of different 
aspects of signal processing that 
we’re doing,” How remarks. “A lot 
of it has to do with a core filtering 
problem that is going on as each of 
the agents is measuring the world 
and extracting information.”

Author
John Edwards (jedwards@edwards 
media.com) is a technology writer 

based in the Phoenix, Arizona, area.

Reference
[1] B. J. Dietvorst, J. P. Simmons, and C. Massey,
“Algorithm aversion: People erroneously avoid algo-
rithms after seeing them err,” J. Exp. Psychol.: Gen.,
vol. 144, no. 1, pp. 114–126, Feb. 2015.
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FIGURE 3. MIT CSAIL researchers temporarily converted 
their lab into a miniature lounge that included a PR2 robot 
“bartender” and two four-wheeled Turtlebot “waiters.” 
(Photo courtesy of MIT/CSAIL.) 
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FROM THE EDITORS
Z. Jane Wang, Wade Trappe, and Shuguang Cui 

S pecial issues and individual feature 
articles are two major mechanisms 
of full-length tutorial surveys of 

IEEE Signal Processing Magazine 
(SPM). Special issues are on topics pro-
posed by guest editor teams, who then 
solicit contributions through an open 
call for papers to select and assemble 
about eight to 12 articles complement-
ing each other; the process has a time 
frame of more than a year and is carried 
out in a well-structured and coordinated 
fashion. In contrast, feature articles 
allow for the contribution of individual 
articles by authors and are usually han-
dled independent of each other. This 
past year, the magazine’s editorial team 
explored a mechanism complementing 
the existing two-leg structure—an arti-
cle cluster/series that may allow us to 
embrace important emerging areas more 
quickly than the current special-issue 
operation, while providing a more bal-
anced coverage than the current feature 
article mechanism by one author team. 
Supported by the senior editorial board, 
the topic of our first feature article clus-
ter is on a highly interdisciplinary topic 
of brain signal processing.

Recent advancements in neuroim-
aging technology have accelerated our 
understanding of the functioning of 
human brain, as evidenced by an ever-
increasing number of publications asso-
ciated with brain mapping and reflected 

by several concerted international efforts, 
such as the U.S. BRAIN Initiative, the 
European Human Brain Project, and 
the Human Connectome Project, which 
seek to revolutionize our understanding 
of the connected brain. The utilization 
of improved technologies for probing the 
brain, however, results in vast amounts of 
data, necessitating concomitant advances 
in efficient approaches and techniques 
for data acquisition, modeling, and ana-
lytics. It is thus widely envisioned that 
brain data analytics will play a major 
role over the next decade in revealing the 
brain’s functional architecture and opera-
tional principles.  

Traditionally, such brain data has been 
analyzed from the approach of signal or 
image processing, but these outcomes 
likely were published 
in such journals as 
Human Brain Map-
ping and NeuroImage,
outside the IEEE Sig-
nal Processing Soci-
ety (SPS). The goal 
of this feature article 
cluster is to bring to -
gether a diverse but 
complementary set of tutorial/review 
articles demonstrating the importance of 
incorporating signal processing strategies 
into the advances in neuroimaging tech-
niques, data analytics, and modeling for 
brain function. With this cluster, we would 
like to showcase the inherently interdisci-
plinary nature of brain mapping research 
and the intriguing related signal processing 

questions. This will bring engineers, physi-
cists, and neurobiologists together to better 
understand brain data, encourage future 
brain data analytics and modeling submis-
sions to IEEE SPS journals, and alert the 
signal processing community to the excit-
ing potential of brain mapping—an area of 
growing significance.

In this issue
This cluster comprises five articles from 
research groups in the United States, 
Canada, and Europe, includes research-
ers ranging from engineering to medi-
cine, and provides a broad view of the 
recent advances regarding two important 
research directions in brain mapping: 
1)  brain connectivity and multimodal 
imaging and 2) multimodal data fusion. 

In addition to recent 
technical advances 
and developments, all 
of these articles pres-
ent interesting medi-
cal applications and 
provide an outlook of 
future challenges in 
building a compre-
hensive understand-

ing of brain mapping.
The first three articles focus on brain 

connectivity. Brain connectivity is of 
critical importance for the understanding 
and assessment of brain functions in nor-
mal and nonhealthy states. Brain con-
nectivity can be described at several 
levels of temporal and spatial scales, 
and it refers to several different types of 

A Feature Article Cluster on Brain Signal Analytics: 
Analytical Approaches to Enhanced Understanding of Brain Function

Digital Object Identifier 10.1109/MSP.2016.2542398
Date of publication: 27 April 2016

It is thus widely 
envisioned that brain data 
analytics will play a major 
role over the next decade 
in revealing the brain’s 
functional architecture 
and operational principles.
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connectivity, including anatomical, 
functional, and effective. For instance, 
the study of changes in brain networks 
over time, termed the chronnectome,
was recently highlighted as one of the 
“Best of 2014” by 
the U.S. National 
Institute of Mental 
Health. The article 
by Razi and Friston, 
“The  Connected 
Brain,” reviews the 
history of brain map-
ping and highlights 
the theoretical ad -
vances made in the popular dyna  mic 
causal modeling used for brain connec-
tivity. Li, Shi, and Toga’s article, 
“Mapping Brain Anatomical Connec-
tivity Using Diffusion Magnetic Reso-
nance Imaging,” focuses on diffusion 
magnetic resonance imaging and cov-
ers key components in the workflow 
for mapping structural connectivity 
of the human brain. In “Time-Varying 
Brain Connectivity in fMRI Data,” Cal-
houn and Adalı focus on time-varying 
brain connectivity modeling via func-
tional magnetic resonance imaging sig-
nals by highlighting some key signal 
processing aspects of the chronnec-
tomics work and reviewing a family of 
whole-brain, data-driven blind source 
separation approaches. 

The last two articles focus on the 
multimodal theme, with one focusing on 
multimodal imaging techniques and the 
other on multimodal data fusion. The 
analysis of multiset data or multimodali-
ty imaging data is inherent to many 
problems in science and engineering, 
including brain data analytics. Technolo-
gies for brain imaging have limitations 
individually, and, thus, ways to synergis-
tically derive information from comple-
mentary modalities have the potential to 
substantially enhance our understanding 
of underlying brain activities. The article 
by Zaidi and Becker, “The Promise of 
Hybrid PET/MRI,” focuses on the 
recent advances of the hybrid posi-
tron emission tomography/magnetic 

resonance imaging, a major techno-
logical breakthrough in neuroimaging, 
and particularly discusses the impor-
tant signal processing related topics 
such as MRI-guided image recon-

struction and cor-
rection and presents 
some potential clin-
ical  applications. 
In the article “Joint 
Blind Source Separa-
tion for Neurophysio-
logical Data Analysis,” 
Chen, Wang, and 
McKeown provide an 

overview and taxonomy of representative 
joint blind source separation methods and 
discuss several real-world neurophysiologi-
cal applications from both the multiset and 
multimodal perspectives. 

We believe the articles selected for 
this cluster offer a snapshot of the latest 
research and showcase the importance 
of signal processing in the exciting field 
of brain mapping and brain data analyt-
ics. We hope that this collection will 
help introduce more signal processing 
researchers into this area to accelerate 
its advancement. 
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The Connected Brain

Adeel Razi and Karl J. Friston

R
ecently, there have been several concerted international 
efforts—the BRAIN Initiative, the European Human 
Brain Project, and the Human Connectome Project, to 
name a few—that hope to revolutionize our under-

standing of the connected brain. During the past two de-
cades, functional neuroimaging has emerged as the 
predominant technique in systems neuroscience. This is 
foreshadowed by an ever-increasing number of publications 
on functional connectivity, causal modeling, connectomics, 
and multivariate analyses of distributed patterns of brain 
responses. In this article, we summarize pedagogically the 
(deep) history of brain mapping. We highlight the theoretical 
advances made in the (dynamic) causal modeling of brain 
function, which may have escaped the wider audience of this 
article, and provide a brief overview of recent developments 
and interesting clinical applications. We hope that this arti-

cle engages the signal processing community by showcasing 
the inherently multidisciplinary nature of this important 
topic and the intriguing questions that are being addressed.

Introduction
In this article, we use several key dichotomies to describe 
the evolution and emergence of modeling techniques used 
to characterize brain connectivity. We provide a historical 
overview of the brain connectivity literature, starting with 
the fundamental distinction between functional segregation 
and integration. In so doing, we introduce a key difference 
between functional and effective connectivity and empha-
size their relationship via underlying models of distributed 
processing. Next, we consider various causal modeling 
techniques that are used to infer directed brain connectivity. 
With the help of a unified framework—based on (neuronal) 
state-space models—we show how (with a succession of sim-
plifying approximations) standard models of connectivity 

Causality, models, and intrinsic dynamics 
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can be derived and how various measures of statistical 
dependencies arise from a generative (state-space) model of 
neuronal dynamics. Finally, we focus on the application of 
dynamic causal modeling (DCM) to endogenous neuronal 
activity and simulations of neuronal fluctuations based on 
the connectome. We describe a series of recent (and rapid) 
developments in modeling distributed neuronal fluctuations 
and how this modeling rests on functional connectivity. 
We contextualize these developments in 
terms of some historical distinctions that 
have shaped our approaches to connectiv-
ity in functional neuroimaging.

Notation
We use lowercase italics,  ,x  for scalars and 
lowercase bold for vectors, x , and vector 
functions, ,( )x t  where each element repre-
sents a time-dependent state. Matrices are shown as uppercase 
bold,  .X In this article, * corresponds to a convolution opera-
tor, @  denotes the complex conjugate transpose, $  denotes 
expectation, and + denotes discrete time-lagged variables. 
Fourier transforms of variables are in italic uppercase, such 
that ( )FT x( ) Xt ~=^ h . We use F ( )$  to denote a variational 
free-energy functional.

A historical perspective on brain connectivity
The notion of connectivity has a long history in brain imag-
ing that can be traced back to the debates around classicism, 
modularity, and connectionism. In the recent past, a common 
notion among neuroscientists was that many functions of the 
brain were predetermined by its structure and that its struc-
ture was programmed by our genes. This view emphasized 
functional segregation and localizationism, tracing its his-
tory back to the days of phrenology (from Gall in the 18th 
century). Functional localization implies that a function can 
be localized in a cortical area. This is more general than 
functional segregation, which suggests that a cortical area 
is specialized for some aspect of neural processing and that 
this specialization is anatomically segregated within the cor-
tex. This is similar to an understanding of how computers 
work, where each part has a preassigned function that can-
not be substituted with other parts. However, in past decades, 
this view has changed, with clear evidence that the neural 
pathways in our brain are flexible, adaptable, connected, and 
moldable by changes in our environment or by injury or dis-
ease. In short, the brain is quintessentially plastic and can 
adapt and adopt new functionalities through necessity. This 
understanding rests on the notion of connectionism (a term 
first coined by Donald Hebb in the 1940s), with the central 
idea that brain function can be understood as the interaction 
among simple units, for example, neurons connected by syn-
apses, that give rise to a connected whole that changes over 
time. Connectionism is closely related to (hierarchical) dis-
tributed processing, a perspective that has been substantiated 
by the work of Hubel and Wiesel (recipients of the Nobel 
Prize in Physiology or Medicine 1981) on how information 

is processed in the visual cortex. They found that the visual 
system comprises simple and complex cells arranged in a 
hierarchical fashion. This finding underwrites the focus on 
neural network implementations based on hierarchical dis-
tributed constructs, leading to recent exciting developments 
in machine learning (e.g., hierarchical Bayesian inference [1]
and deep learning algorithms [2]).

These ideas emerged in functional brain imaging as func-
tional segregation and functional integra-
tion. Since their inception, there has been 
a sustained trend to move from functional 
segregation (and the study of regionally 
specific brain activation) toward functional 
integration (and the study of its connectiv-
ity). Functional localization implies that 
a function can be localized to a cortical 
area, whereas segregation suggests that a 

cortical area is specialized for some aspects of perceptual or 
motor processing and that this specialization is anatomically 
segregated within the cortex. The cortical infrastructure sup-
porting a single function may then involve many specialized 
areas whose union is mediated by the functional integration 
among them. In this view, functional segregation is meaning-
ful only in the context of functional integration and vice versa. 
There are several descriptions of neuronal processing that 
accommodate the tendency for brain regions to engage in spe-
cialized functions (i.e., segregation) and the tendency to coor-
dinate multiple functions (i.e., integration) through coupling 
specialized regions. This functional integration is a dynamic 
self-assembling process, with parts of the brain engaging and 
disengaging over time, and has been described by appealing to 
dynamical systems theory, for example, self-organized criti-
cality [3], pattern formation, and metastability [4].

This review pursues another key theme—the distinction 
between functional and effective connectivity. This dichot-
omy relies on the definition of connectivity (i.e., functional 
integration) per se. The former uses a pragmatic definition 
of connectivity based on (Pearson) correlations and rests on 
statistical dependencies between remote neurophysiological 
events. However, this approach is problematic when dealing 
with distributed neuronal processes in the brain that are medi-
ated by slender (axonal) neuronal connections or wires. A more 
mechanistic explanation of observed responses comes from the 
definition of effective connectivity that refers explicitly to the 
influence that one neural system exerts over another. In [5], 
it was proposed that “effective connectivity should be under-
stood as the experiment and time-dependent, simplest possible 
circuit diagram that would replicate the observed timing rela-
tionships between the recorded neurons.” This speaks to two 
important points: effective connectivity is dynamic (activity 
dependent) and depends on a model of directed interactions or 
coupling, which we focus on in this review. Given this, an inter-
esting development in functional connectivity now considers 
temporal dynamics, referred to as dynamic functional connec-
tivity [6]. However, these developments fall short of furnish-
ing a causal explanation of the sort provided by (model-based) 

Several concerted 
international efforts
hope to revolutionize
our understanding of
the connected brain.
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effective connectivity. This is because functional connectivity 
is essentially a description of second-order data features, 
which precludes a mechanistic explanation of neurophysi-
ological time series. Recent applications of DCM to ongoing 
(seizure) activity—in epilepsy—rest explicitly on dynamic 
functional connectivity to estimate the underlying fluctua-
tions in effective connectivity or cortical gain control [7], [8]. 
In short, the operational distinction between functional and 
effective connectivity is important because it determines the 
nature of the inferences made about functional integration and 
the sorts of questions that can be addressed with careful con-
sideration of the intricate interrelationship between effective 
and functional connectivity [9], [10].

Put simply, functional connectivity is a measure of statisti-
cal dependencies, such as correlations, coherence, or transfer 
entropy. Conversely, effective connectivity corresponds to the 
parameter of a model that tries to explain observed depen-
dencies (functional connectivity). In this sense, effective 
connectivity corresponds to the intuitive notion of directed 
causal influence. This model-based aspect is crucial because 
it means that the analysis of effective connectivity can be 
reduced to model comparison, for example, the comparison 
of a model with and without a particular connection to infer 
its contribution to observed functional connectivity. In this 
sense, the analysis of effective connectivity recapitulates the 
scientific process because each model corresponds to an alter-
native hypothesis about how observed data were caused. In 
our context, these hypotheses pertain to causal models of dis-
tributed brain responses. Later, we consider analytical expres-
sions that link effective and functional connectivity and show 

that the latter can be derived from the former, whereas the 
converse is not true.

We have considered the distinction between functional 
segregation and integration in the brain and how the dif-
ferences between functional and effective connectivity 
shape the way we characterize connections and the sorts 
of questions that are addressed to empirical data. In the 
next section, we look at the relationship between functional 
and effective connectivity and expand on the causal aspect 
of effective connectivity. Interested readers are directed to 
our previous review [10] for a more detailed discussion on 
brain connectivity.

Causal analyses of dynamical systems
The brain is a dynamic and self-organizing organ with emer-
gent dynamics. These dynamics can be seen at multiple 
spatial and temporal scales; for example, there are tens of 
thousands of synaptic connections to a single neuron, which 
can fire dozens of times every second. Furthermore, this 
connectivity itself changes over multiple spatial and temporal 
scales. The spatial scale we are interested in, as measured by 
fMRI, is the macroscopic level, where we are interested in 
distributed processing or connectivity among neural systems 
and where each neural region or source comprises millions 
of neurons. As previously noted, the direction of informa-
tion transfer or directed coupling is important. Figure 1
illustrates the fact that changes in connectivity over time 
underlie the causal relationship among neuronal systems. 
In Figure 1, we show a graph with undirected edges among 
ten nodes, where each node can be regarded as a proxy for a 
neuronal system (in general, these nodes could also be net-
work devices in a communication network, e.g., exchang-
ing e-mails). Alternatively, if the links represent a distance 
metric and nodes represent organisms, this could represent a 
model of how infections are disseminated. In this example, 
the graph evolves over time. Although the edges of the graph 
are undirected at each instance, adding a temporal aspect to 
this evolving graph enables one to infer directed information 
flow. (Note: Although we have not used the word informa-
tion here in a strictly information-theoretic sense, there is a 
straightforward analogy between electrical impulses in neu-
ral systems and the classic communications theory picture of 
source, channel, and receiver [11].) For example, if we were 
interested in causal coupling between nodes 1 and 2 (red in 
Figure 1), we see that the activity in node 1 affects the activity 
in node 2, where we assume this influence endures over time. 
As we can see, node 1 is connected to node 2 via intermedi-
ate nodes 4, 8, and 5 (shown as blue edges) at time t td- ;
nodes 9, 10, and 7 at time t ; and node 3 at time t td+ . This 
means that node 1 can affect node 2 in the future. However, 
the converse is not true, in that the activity in node 2 cannot 
affect the future of node 1. This asymmetry is a signature 
of causality (i.e., temporal precedence) and rests on account-
ing for the arrow of time. This is why, as we see in the next 
section, the statistical models used for characterizing effec-
tive connectivity are usually based on differential equations 
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FIGURE 1. This schematic depicts a graph with undirected edges compris-
ing ten nodes, where each node can be considered as a neuronal system. 
We sketched the evolution of this graph over three time points (under the 
assumption that each node retains a memory of past influences). Nodes 
1 and 2 (shown in red) are the nodes in which a causal relationship is of 
interest. The key point of this example is that fluctuations in undirected 
coupling can induce directed dependencies.
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(or difference equations in discrete time) and therefore explic-
itly take time into account. This simple example emphasizes 
the importance of temporal fluctuations in connectivity, even 
in undirected graphs. However, we do not want to give the 
impression that temporal precedence is necessary to infer 
causal relationships. Temporal precedence is an important 
aspect, and many definitions of causation require cause to 
precede effect [12], [13], for example, directed functional 
connectivity measures based on Yule–Walker formulations 
[vector autoregressive (VAR) models]. However, temporal 
precedence alone cannot distinguish effective connectivity 
from spurious dependencies caused by unknown factors. As 
an example, the barometer falls before the rain, but it does 
not cause the rain. The type of causal-
ity that we are concerned with is based 
on control theoretic concepts, where the 
causes (exogenous experimental inputs, 
endogenous random neural fluctuations, or 
both) produce effects (neural activity) that 
are observed empirically through hemody-
namics as blood oxygen level-dependent 
(BOLD) signals. This form of causality 
is closely related to the probabilistic and 
graphical framework of causal calculus [14] (see “Simpson–
Yule Paradox”), although there is a clear distinction between 
the two approaches, which we return to later.

We use state-space models to describe the basic concepts 
here and demonstrate that causality based on temporal prece-
dence can be regarded as a special case of causality based on 
state-space graphs. In what follows, we look at several mea-
sures of causality in functional neuroimaging literature (which 
refer largely to fMRI but also hold for other modalities such as 
EEG, MEG, and local field potentials). These measures can be 
cast in terms of a generalization of state-space models based on 
stochastic differential equations.

State-space modeling of neuronal dynamics
The most natural framework for modeling distributed and cou-
pled neural activity is to use state-space models. State-space 
modeling has its origin in control engineering, but the term 
state-space was first used by Kalman [24] and can be traced 
back to von Bertalanffy, who introduced general systems the-
ory to biology in the 1940s and 1950s. We start with a generic 
description of coupled neuronal dynamics in terms of differen-
tial equations of the form

( ), , ( ) ( )x x u wt t tf i= +o ^ h   (state equation), (1)

( ) ( ), ( )y x et t th i= +^ h   (observation equation), (2)

where ( ) [ ( ),  ( ),…, ( )]x t x t x t x t T
n1 2=  represents a vector of n

hidden state variables (where each state could correspond to 
a vast number of neurons in a cortical area, source, or spatial 
mode); ( )x to  represents the change in those state variables; i
are the underlying (connectivity) parameter that are assumed 
to be time-invariant; ( )y t  is the observed BOLD signal; and 

( )w t  and ( )e t  are state noise (observation or instrument noise, 

respectively), which makes this differential equation ran-
dom. (Note: Strictly speaking, the hidden states include both 
neuronal and hemodynamic states; however, for simplicity, 
we ignore hemodynamic states in this article.) The (random) 
endogenous fluctuations ( )w t  on the motion of the hidden 
neuronal states represent the unknown influences (e.g., spon-
taneous fluctuations) that can only be modeled probabilisti-
cally. (Note: A reviewer of this article rightly pointed out that, 
in this exposition, we limited ourselves to an additive form 
of endogenous fluctuations that precludes the more general 
treatment of state-dependent neuronal fluctuation of the sort 

( ), , ( ) ( ) ,,x u wt t tf i^ h  which are used in modeling many com-
plex volatile systems [25], including the brain [26].) The neu-

ronal states are hidden because they cannot 
be measured directly. The function f
defines the motion of the coupled dynami-
cal system that is determined by inputs ( )u t ,
which we consider to be deterministic (but 
could also have stochastic component) and 
known. Inputs usually pertain to experi-
mentally controlled variables, such as 
change in stimuli (a visual cue or an audi-
tory signal) or instructions during an fMRI 

experiment (we see later that this exogenous input is absent 
in resting-state fMRI). This description of neuronal dynam-
ics provides a convenient model of causal interactions among 
neuronal populations because it describes when and where 
exogenous experimental input ( )u t  perturbs the system and 
how (hidden) states influence changes in other states. Note 
that we have assumed that the form of the system dependen-
cies f  (and the connectivity parameters i) are time-invariant, 
which means that we are assuming that the structural proper-
ties of the system will remain fixed over time (i.e., during the 
length of data acquisition).

We have not discussed the nature of the state and the 
observation noise process, which we consider in the section  
“Dynamic Casual Modeling of Intrinsic Networks.” For now, 
we assume that they possess usual noise properties, that is, 
they are independent and identically distributed. We describe 
a more general framework for analytic (non-Markovian) ran-
dom fluctuations in the same section. A key simplification in 
this form of modeling is that we have lumped together many 
microscopic neuronal states to form hidden states ( )x t  that 
are abstract representations of neuronal activity (cf. a mean 
field approximation). In reality, the equations of motion—and 
the observer equation—describe very complicated interac-
tions among millions of neurons. The formulation above cor-
responds to the amplitude of macroscopic variables or order 
parameters summarizing the dynamics of large neuronal pop-
ulations. (Note: In statistical physics, the order parameter is a 
variable that indicates which phase you are in; for example, in 
a phase transition between liquid and gas, the order parameter 
may be the density.) Essentially, this means that the individual 
neurons become ordered, showing a coordinated dynamic pat-
tern that can be described with the concept of order param-
eters. This sort of formulation can be motivated by basic 

The notion of connectivity 
has a long history in brain 
imaging that can be traced 
back to debates around 
classicism, modularity, 
and connectionism.
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The Simpson–Yule paradox, or simply Simpson’s paradox 
[15]–[17], refers to the disconcerting situation in which sta-
tistical relationships between variables (e.g., x and y) are 
reversed or negated by the inclusion of an additional vari-
able (z); for a more recent discussion, see [18]–[20]. A 
famous example of this paradox is when the University of 
California, Berkeley, came under investigation in 1975 for 
gender bias in graduate admissions. The graduate admis-
sions statistics revealed that men applying were more likely 
to be admitted than women. However, when data were 
analyzed for each department separately, the reverse was 
true: no department was statistically significant in favor of 
men. The resolution of this paradox turned out to be that 
women applied for more competitive departments—with 
low success rates—in relation to men, who applied for 
fewer competitive majors with greater chances of accep-
tance. The main point is that conclusions based on data 
are sensitive to the variables we choose to hold constant, 
and that is why the “adjustment problem” is so critical in 

the analysis of observational studies. Even now, no formal 
procedure has emerged that tells us whether adjusting for 
variable z is appropriate for the given study, setting aside 
intractable criteria [21] based on counterfactuals [22]. 
However, Simpson’s paradox is easily resolved with causal 
graphs. A simple graphical procedure provides a general 
solution to the adjustment problem [23]. This procedure is 
shown in Figure S1 and summarized as follows:

Objective
Check if z1  and z2 are sufficient measurements.
1) z1 and z2 should not be descendants of x.
2) Delete all nonancestors of { , ,x y z }.
3) Delete all edges from x.
4) Connect any two parents sharing a child.
5) Strip arrowheads from all edges.
6) Delete z1 and z2 . Check if x is disconnected from y  in 

the remaining graph; then z1 and z2 are appropriate 
measurements.

z1

z1 z1 z1

z1 z1

z2

z2
z2 z2

z2 z2

y

y y yy

y yx

x

x

x

x

Step 1

Step 4 Step 5 Step 6

Step 2 Step 3

Simpson–Yule Paradox

FIGURE S1. A simple graphical procedure provides a general solution to the adjustment problem. (Figure reproduced and redrawn with permission 
from [23].) 
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principles [27], for example, the center manifold theorem [28]
and the slaving principle [29], [30], that apply generally to 
coupled dynamical systems.

State-space modeling and effective connectivity
The state and observation equations in (1) and (2) are generic 
representations; hence, there are several forms that the map-
pings or functions f  and h  can take. In turn, these define the 
sort of inference that can be made and the nature of causal 
relationships that can be identified from these models. We see 
in this section that almost all models in neuroimaging can be 
viewed as special cases of these equations.

Dynamic causal modeling
Although the application of general state-space models in 
neuroimaging has been around for decades, the explicit use 
of state-space models based on differential equations can be 
traced to [31], with the first introduction of a nonlinear neu-
ral mass model for EEG data. However, the most widely used 
and comprehensive framework, which uses Bayesian statistics 
to make model and parameter inferences, is DCM [32]. When 
first introduced, DCM used an ordinary differential equation 
(ODE) but was later extended to state-space models based on 
stochastic and random differential equations [33], [34]. The 
most widely used DCM is based on a Taylor expansion of (1) to 
its bilinear approximations:

( ) ( ) ( ) ( ),x A B u x Cu wt t t t
j
J j

j0
= + + +

=
o ` j/ (3)

where ,/ /A xB uxf f22 2 22 2= = , and /C uf2 2=  with 
, ,A B Cni = " ,. The matrix A is known as the Jacobian (or 

Laplace–Beltrami operator) describing the behavior—that is, 
the effective connectivity—of the system near its fixed point 
( ( )xf 0o = ), in the absence of the fluctuations ( )w t  and the 
modulatory inputs  ( )u t . The matrices B j  encode the change 
in effective connectivity induced by the jth input ( )u tj , and C
embodies the strength of the direct influences of inputs ( )u t  on 
neural activity. In fMRI, the mapping from hidden states to the 
observed BOLD data ( )y t  is based on a hemodynamic model 
that transforms hidden neuronal states of each population or 
region into predicted BOLD responses using a previously 
established biophysical model [32], [35], [36]. This hemody-
namic model is based on four ODEs and five hemodynamic 
parameters ,hi  such that { , }n hi i i= . The hemodynamic 
model describes how neuronal activity engenders vasodila-
tory signals that lead to increases in blood flow, which in turn 
changes the blood volume and deoxyhemoglobin content, 
which subtend the measured signal.

The bilinear approximation to our general state-space 
model of neurophysiological dynamics furnishes a probabi-
listic model that specifies the probability of observing any 
time series given the parameters. This is known as a likeli-
hood model and usually assumes that the observed data are a 
linear mixture of the model predictions and Gaussian obser-
vation noise. By combining this likelihood model with prior 
beliefs (specified in terms of probability distributions), we have 

what is called, in Bayesian statistics, a generative model. This 
allows one to use standard (variational) procedures to estimate 
the posterior beliefs about the parameters and, crucially, the 
model itself. The real power of DCM lies in the ability to com-
pare different models of the same data. This comparison rests 
on the model evidence, which is simply the probability of the 
observed data under the model in question (and given known 
or designed exogenous inputs). The evidence is also called 
the marginal likelihood because one marginalizes or removes 
dependencies on the unknown quantities (hidden states and 
parameters). The model evidence can simply be written as

( | , ) ( , , | , ) .y u y x u xp m p m d di i= # (4)

Model comparison rests on the evidence for one model relative 
to another (see [51] for a discussion in the context of fMRI). 
Model comparison based on the likelihood of different models 
provides the quantitative basis for all evidence-based hypoth-
esis testing. Usually one selects the best model using Bayesian 
model comparison, in which different models are specified in 
terms of priors on the coupling parameters. These are used to 
switch off parameters by assuming a priori that they are zero 
(to create a new model). In DCM, priors used are so-called 
“shrinkage priors” because the posterior estimates shrink 
toward the prior mean. The size of the prior variance deter-
mines the amount of shrinkage. With a null model m0  and an 
alternative model m1, the Bayesian model comparison rests on 
computing the logarithm of the evidence ratio

|
|

| |

F , F , ,

( ) ( )
y
y

y y

y y

ln ln ln
p m
p m

p m p m
0

1
1 0

1 0. n n

= -

-

c
^
^

^ ^

h
h
m

h h (5)

where F(.) is the free energy that provides an (upper bound) 
approximation to Bayesian model evidence. Note that we have 
expressed the logarithm of the marginal likelihood ratio as a 
difference in log evidences. This is the preferred form because 
model comparison is not limited to two models but can cover a 
large number of models whose quality can be usefully quanti-
fied in terms of their log evidences. A relative log evidence of 
three corresponds to a marginal likelihood ratio (Bayes fac-
tor) of about 20 to one, which is considered strong evidence in 
favor of one model over another [37]. An important aspect of 
model evidence is that it includes a complexity cost (which is 
sensitive not only to the number of parameters but also to their 
interdependence). This means that a model with redundant 
parameters would have less evidence, even though it provided 
a better fit to the data (see [51]). In most current implementa-
tions of DCM, the log evidence is approximated with a (varia-
tional) free-energy bound that (by construction) is always less 
than the log evidence. As we see in (5), this bound is a function 
of the data and (under Gaussian assumptions about the poste-
rior density) some proposed values for the states and param-
eters. When the free energy is maximized (using gradient 
ascent) with respect to the proposed values, they become the 
maximum posterior or conditional estimates, n , and the free 
energy, F , |y yln p m1 #n^ ^h h, approaches the log evidence. 
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We return to Bayesian model comparison and the inversion 
of DCMs in the section “Biophysical Modeling of Neuronal 
Dynamics.” Next, we consider some alternative models. The 
first is a discrete time linear approximation to (1), which is the 
basis of Granger causality.

Vector autoregressive modeling
In contrast to DCM, in which causality is based on control 
theoretic constructs, (multivariate) autoregressive models 
[38]–[40] use temporal precedence for inferring causality in 
BOLD time series [41]. This is known as directed functional 
connectivity in neuroscience. It is straightforward to see that 
one can convert a state-space model—or DCM—into a VAR 
model with a few simplifying assumptions. Using a linear 
approximation to the state-space model of (1) and assum-
ing that we can measure the neuronal states directly [i.e., 

( ) ( )y xt t= ], then we can write

( ) ,( ) ( )y Ax zt t td= - +u (6)

which can be written as

,Y YA ZT= +u u

where ( )A Aexp d=u  and 0( ) exp( ) ( )z At w t d8 x x x= -d . The 
second equality expresses the resulting VAR model as a simple 
general linear model with explanatory variables Yu  that corre-
spond to a time-lagged (time × source) matrix of states. Here, the 
unknown parameters comprise the autoregression matrix Au .
Note that the innovations, ( )z t , are now a mixture of past fluc-
tuations in ( )w t  that are remembered by the system. There is a 
clear distinction between fluctuations ( )w t  that drive the hid-
den states (1) compared with the innovations ( )z t  in (6) that 
underlie autoregressive dependencies among observation ( )y t .
There is an important point to note here. Because the repa-
rameterization of the effective connectivity in (3) uses a 
matrix exponential, the autoregressive coefficients Au  in (6)
are no longer the parameters of the underlying effective con-
nectivity among neuronal states. This means that any model 
comparisons—based on classical likelihood ratio tests such 
as Bayesian information criterion—will be making infer-
ences about the statistical dependencies modeled by the 
autoregressive process and not about the causal coupling as 
in DCM. This is why connectivity measures based on autore-
gressive coefficients, for example, Granger causality [42], 
are regarded as directed functional connectivity as opposed 
to effective connectivity. A further distinction is that most 
Granger causality applications either ignore hemodynamic 
convolution or assume that hemodynamics are identical and 
noiseless [147]. An important aspect of Granger causality 
measures based on autoregressive formulations (we provide 
analytic links between the two in Figure S2) is that they can 
become unreliable in the presence of measurement noise 
and more so when underlying dynamics are dominated by 
slow (unstable) modes, quantified by the principal Lyapunov 
exponent [43]. However, there are several recent advances 
in the Granger causality literature that speak to these limita-
tions [44]–[46].

Structural equation modeling
Structural equation modeling (SEM) [47] is another generic 
approach developed primarily in economics and social scienc-
es [48], [49] and was used in (structural) neuroimaging for the 
first time in [50]. We can again see that SEM is a special case 
of (1) by appealing to the (adiabatic) assumption that neuronal 
dynamics have reached equilibrium at each point of observa-
tion—or, in other words, the dynamics are assumed to occur 
over a timescale that is short relative to the fMRI sampling 
interval. In terms of implementation, we can force this condi-
tion by having very strong shrinkage priors in DCM. With this 
assumption, we can reduce the generative model of (3) so that 
it predicts the observed covariance among regional responses 
over time instead of predicting the time series itself. Math-
ematically, this means that we assume ( ) ( )y xt t= , ( )u t 0= ,
and ( )x t 0=o . This simply means that ( ) ( ) ( )x y A wt t t1= =- - ,
which implies that

/ / ( ) ,A Ay T1 1= - -
w (7)

where / ( ) ( )y yt ty T=  and / ( ) ( )w wt t T=w . Note that 
we do not have to estimate hidden states because the genera-
tive model explains observed covariances in terms of random 
fluctuations and unknown coupling parameters. The form of 
(7) has been derived from the generic generative model. In this 
form, it can be regarded as a Gaussian process model, where 
the coupling parameters become, effectively, parameters of the 
covariance among observed signals due to the hidden states. We 
can also give an alternative formulation of SEM in terms of path 
coefficients, but we skip this for brevity (for details, see [51]).

Although SEM has been used in fMRI literature, it provides 
a description of static dependencies; hence, it is not suitable 
for fMRI (and EEG/MEG) time series, in which the charac-
teristic time constants of the neuronal dynamics and hemody-
namics are much larger than the exogenous inputs that drive 
them. This means that testing for context-sensitive changes in 
effective connectivity becomes problematic in event-related 
designs. For example, [52] used simulated fMRI time series 
from a realistic network model for two task conditions in 
which the anatomical connectivity was known and could be 
manipulated. The results suggested that caution is necessary in 
applying SEM to fMRI data and illustrate that functional inter-
actions among distal network elements can appear abnormal 
even if only part of a network is damaged.

Another issue when using SEM to infer effective connectiv-
ity is that we can only use models of low complexity—usually, 
(acyclic) models that have no recurrent connections [53]. This 
is because fitting the sample covariance means that we have to 
throw away lots of information in the original time series. Heu-
ristically, the ensuing loss of degrees of freedom means that 
conditional dependencies among the estimates of effective con-
nectivity are less easy to resolve. In machine-learning literature, 
SEM can be regarded as a generalization of inference on linear 
Gaussian Bayesian networks that relaxes the acyclic constraint. 
As such, it is a generalization of structural causal modeling, 
which deals with directed acyclic graphics (DAGs) (see next 
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section). This generalization is important in the neurosciences 
because of the ubiquitous reciprocal connectivity in the brain that 
renders it cyclic or recursive. Next, we turn to the description of 
time series based on second-order statistics and show that they 
can be analytically derived from the state-space model of (1).

Coherence, cross spectra, and correlations
Until now, we have considered only procedures for identifying 
effective connectivity from fMRI time series. However, the fol-
lowing important question remains: Is there an analytical rela-
tionship between functional and effective connectivity? This 
question is addressed schematically in “Measures of Connec-
tivity” by showing how various measures of statistical depen-
dencies (functional connectivity) are interrelated and how they 
can be generated from a DCM. This sche-
matic contextualizes different measures of 
functional connectivity and how they arise 
from (state-space) models of effective con-
nectivity. In other words, measures that are 
typically used to characterize observed data 
can be regarded as samples from a probabili-
ty distribution over functions whose expecta-
tion is known. This means that one can treat 
normalized measures, such as cross-correla-
tion functions and spectral Granger causality, as explicit func-
tions of the parameters of the underlying generative process.

In “Measures of Connectivity,” we include common 
(descriptive) measures of functional connectivity that have been 
used in fMRI, such as the correlation coefficient (the value of the 
cross-correlation function at zero lag), coherence, and (Geweke) 
Granger causality [54]. These measures can be regarded as stan-
dardized (second-order) statistics based on the cross-covariance 
function, the cross-spectral density, and the directed transfer 
functions, respectively. In turn, they are determined by the first-
order (Volterra) kernels, their associated transfer functions, and 
VAR coefficients. For readers not familiar with Volterra kernels, 
their use provides an alternative to the conventional identifica-
tion methods by expressing the output signal as high-order non-
linear convolution of the inputs. This can simply be thought of 
as a functional Taylor expansion and can be regarded as a power 
series with memory (see [55] for a detailed discussion). All 
of these representations can be generated from the underlying 
state-space model used by DCM. Let us examine these relation-
ships further. First, there is a distinction between the state-space 
model (upper two panels of Figure S2), which refers to hidden 
or system states, and representations of dependencies among 
observations (lower panels), which do not. This is important 
because, although one can generate the dependencies among 
observations from the state-space model, one cannot do the 
converse. In other words, it is not possible to derive the param-
eters of the state-space model (e.g., effective connectivity) from 
transfer functions or autoregression coefficients. This is why 
one needs a state-space model to estimate effective connectivity 
or, equivalently, why effective connectivity is necessarily mod-
el-based. Second, we have seen in previous sections that SEM 
and autoregressive representations can be derived from (bilinear 

and stochastic) DCM in a straightforward manner (under certain 
assumptions). The convolution kernel representation in Figure 
S2 provides a crucial link between covariance-based second-
order measures, such as cross covariance and cross correlation, 
and their spectral equivalents, such as cross spectra and coher-
ence. Figure S2 also highlights the distinction between second-
order statistics (lower two rows) and models of the variables per 
se (upper three rows). For example, convolution and autoregres-
sive representations can be used to generate time series (or their 
spectral counterparts), whereas cross-covariance functions and 
autoregression coefficients describe their second-order behav-
ior. This is important because this second-order behavior can be 
evaluated directly from observed time series. Indeed, this is the 
common way of measuring functional connectivity in terms of 

(second-order) statistical dependencies. We 
also highlight the dichotomy between time 
and frequency representations (measures 
in the top panel). For example, the (first-
order Volterra) kernels in the convolution 
formulation are the Fourier transform of the 
transfer functions in frequency space (and 
vice versa). Similarly, the directed transfer 
functions of the autoregressive formulation 
are based on the Fourier transforms of the 

autoregression coefficients. Another distinction is between rep-
resentations that refer explicitly to random (state and observa-
tion) noise and autoregressive representations that do not. For 
example, notice that the cross-covariance functions of the data 
depend on the cross-covariance functions of state and obser-
vation noise. Conversely, the autoregression formulation only 
invokes (unit normal) innovations (although the autoregression 
coefficients are an implicit function of both state and observa-
tion noise covariance functions). In the current setting, autore-
gressive representations are not regarded as models but simply 
as ways of representing dependencies among observations. This 
is because (hemodynamic) responses do not cause responses—
hidden (neuronal) states cause responses.

Crucially, all of the aforementioned formulations of sta-
tistical dependencies contain information about temporal 
lags (in time) or phase delays (in frequency). This means 
that, in principle, all measures are directed in the sense that 
the dependencies from one region to another are distinct 
from the dependencies in the other direction. However, only 
the autoregressive formulation provides directed measures 
of dependency—in terms of directed transfer functions or 
Granger causality. This is because the cross-covariance and 
cross-spectral density functions between two time series are 
antisymmetric. The autoregressive formulation can break this 
(anti)symmetry because it precludes instantaneous dependen-
cies by conditioning the current response on past responses. 
Note that Granger causality is, in this setting, a measure of 
directed functional connectivity [56]. This means that Grang-
er causality (or the underlying autoregression coefficients) 
reflects directed statistical dependencies such that two regions 
can have strong autoregression coefficients or Granger cau-
sality in the absence of a direct effective connection. Finally, 

Key modeling 
assumptions underlying 
DCM are motivated by 
neuroanatomical and 
neurophysiological
constraints.
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The upper panel in Figure S2 illustrates the form of a state-
space model that comprises differential equations coupling 
hidden states (first equation) and an observer equation 
mapping hidden states ( )x t  to observed responses ( )y t  (sec-
ond equation). Dynamic causal models are summarized by 
a Taylor (bilinear) approximation. Crucially, both the motion 
of hidden states and the responses are subject to random 
fluctuations, also known as state ( )w t  and observation ( )e t
noise. The form of these fluctuations is modeled in terms of 
their cross-covariance functions / ( )t  of time t or cross-spec-
tral density functions ( )g t  of (radial) frequency ~, as shown 
in the lower equations. Given this state-space model and its 
parameters i (which include effective connectivity), one can 
now parameterize a series of representations of statistical 
dependencies among successive responses as shown in the 
third row. These include convolution and autoregressive for-
mulations shown on the left and right, respectively, in either 
time (pink and orange) or frequency (light green) space. 
The mapping between these representations rests on the 
Fourier transform, denoted by a dotted line, and its inverse. 
For example, given the equations of motion and observer 
function of the state-space model, one can compute the con-
volution kernels that, when applied to state noise, produce 

the response variables. This allows one to express observed 
responses in terms of a convolution of hidden fluctuations 
and observation noise. The Fourier transform of these con-
volution kernels ( )tl  is called a transfer function ( )K t . Note 
that the transfer function in the convolution formulation 
maps from fluctuations in hidden states to response vari-
ables, whereas the directed transfer function in the autore-
gressive formulation ( )S t  maps directly among different 
response variables. These representations can be used to 
generate second-order statistics or measures that summarize 
the dependencies, as shown in the third row, for example, 
cross-covariance functions and cross spectra. The normal-
ized or standardized variants of these measures are shown 
in the lower row and include the cross-correlation function 
(in time) or coherence (in frequency). The equations show 
how various representations can be derived from each 
other. All variables are either vector or matrix functions of 
time or frequency. For simplicity, the autoregressive formula-
tions are shown in discrete form for the univariate case (the 
same algebra applies to the multivariate case, but the nota-
tion becomes more complicated). Here, ( )z t  is a unit nor-
mal innovation. Finally, note the Granger causality is only 
appropriate for a bivariate time series.

Measures of Connectivity

(Inverse) Fourier Transform

Transformation Under Assumptions

=

=

0
0

0
y (t – 1)
y (t – 2) y (t – 1)

...

...
. . .

. . .

. . . . . .

0
0

0
a1

a1a2

Y
~

A
~

State-Space Model

y(t ) = h (x(t ), θ) + e(t )
x(t ) = f (x(t ), θ) + w(t )
.

Σw(t ) = 〈w(t )w(t – )T 〈 Σe(t ) = 〈e(t )e(t – )T 〈and
.

E.g., Bilinear DCM: x(t ) = (A + ∑j ujB
j)x + Cu + w(t )

SEM
(Assuming x(t ) = y (t ) and y(t ) = 0 u(t ) = 0)

.

y(t ) = Ay(t ) + w(t ) = (Θ – I)y(t ) + e(t )
.

y(t ) = Θy(t ) + e(t )

Convolution Kernel

κ( ) = xh . exp ( xf)
y(t ) = κ( ) ∗ w(t ) + e(t )

cij ( ) =
Σjk ( )

Σjj (0) Σkk (0)√

Cross Correlation

Σ( ) = 〈y(t ) . y(t – )T

= κ(t ) ∗ Σw(t ) ∗ κ(–t ) + Σe(t )

Cross Covariance

Spectral Representations

Convolution Theorem

Y ( ) = K ( )W ( ) + E ( )
K ( ) = FT(κ( ))

Cross-Spectral Density

gy( ) = 〈Y ( )Y ( )† 〈

= K( ) . gw( ) . K( )† + ge( )

Coherence

Cij ( ) =
|gjk( )|2

gjj ( )gkk( )

Y ( ) = A ( ) . Y ( ) + Z ( )
A ( ) = FT(a1, a2 aN)

Convolution Theorem

Y ( ) = S ( ) . Z ( )

S ( ) = (I – A( ))–1

Directed Transfer Functions

Granger Causality

|Sjk( )|2

g ( )
Gjk ( ) = –In 1 –

VAR Model
(Assuming x(t ) = y(t ))

y(t ) = ∑
N

i = 1

aiy(t  – i ) + z(t )

Autoregression Coefficients

A = 〈YTY〉–1 〈YTY〉
~ ~ ~ ~ ~

= ρ–1[ρ1, ,ρp] T

~ ~
Autocorrelation

cii = (I – A)–1 (I – AT)–1

〉

FIGURE S2. The relationship among different formulations of dependencies within a multivariate time series used in fMRI. 
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there is a distinction between (second-order) effects sizes in 
the upper row of dependency measures and their standardized 
equivalents in the lower row (Figure S2). For example, coher-
ence is simply the amplitude of the cross-spectral density 
normalized by the autospectra of the two regions in question. 
Similarly, one can think of Granger causality as a standard-
ized measure of the directed transfer function (normalized by 
the autospectra of the source region).

We also note another widely used mea-
sure of functional dependencies known as 
mutual information [57], which quantifies 
the shared information between two vari-
ables and can reflect both linear and nonlin-
ear dependencies. For example, if two time 
series are independent, there is no shared 
information, and hence the mutual infor-
mation is zero. Mutual information can be 
calculated relatively simply—under the assumption that time 
series are Gaussian—from coherence in the frequency domain 
as [58]–[60]

,( )log C d
2
1 1ij ij

1

2
j

r
~ ~= -

~

~
^ h# (8)

where ( )Cij ~  is the coherence (as defined in Figure S2)
between the two time series i and j.

In summary, given a state-space model, one can predict or 
generate the functional connectivity that one would observe 
in terms of cross-covariance functions, complex cross spec-
tra, or autoregression coefficients (where the latter can be 
derived in a straightforward way from the former using the 
Yule–Walker formulation). In principle, this means that one 
could use either the sampled cross-covariance functions or 
cross spectra as data features. It would also be possible to use 
the least-squares estimate of the autoregression coefficients—
or, indeed, Granger causality—as data features to estimate the 
underlying effective connectivity. We describe such schemes 
in the next section.

Summary
In this section, we have tried to place different analyses 
of connectivity in relation to each other. The most preva-
lent approaches to effective connectivity are DCM, SEM, 
and Granger causality. We highlighted some of the implicit 
assumptions made when applying SEM and Granger causality 
to fMRI time series. Next we will focus on generative models 
of distributed brain responses and consider some of the excit-
ing developments in this field.

Biophysical modeling of neuronal dynamics
Biophysical models of neuronal dynamics are usually used for 
one of two things: either to understand the emergent proper-
ties of neuronal systems or as observation models for measured 
neuronal responses. We discuss examples of both. In terms of 
emergent behaviors, we consider dynamics on structure [61]–
[69] and how this behavior has been applied to characterizing 
autonomous or endogenous fluctuations in fMRI [70]–[73]. 

This section concludes with recent advances in DCM of direct-
ed neuronal interactions that support endogenous fluctuations. 
Some sections below are based on our previous review [10].

Intrinsic dynamics, criticality, and bifurcations
The use of resting-state fMRI [74], [75] or studies based on 
BOLD signal correlations while the brain is at rest are wide-

spread [76]. These patterns are thought to 
reflect anatomical connectivity [77] and 
can be characterized in terms of remarkably 
reproducible spatial modes (resting-state or 
intrinsic networks). One of these modes 
recapitulates the pattern of deactivations 
observed across a range of activation studies 
(the default mode [78]). Resting-state fMRI 
studies show that even at rest, endogenous 
brain activity is self-organizing and highly 

structured. The emerging picture is that endogenous fluctua-
tions are a consequence of dynamics on anatomical connec-
tivity structures with particular scale-invariant characteristics 
[70], [71], [79], [80]. These are well-studied and universal 
characteristics of complex systems and suggest that we may be 
able to understand the brain in terms of universal phenomena 
[81]. Universality is central to the hypothesis that the cerebral 
cortex is poised near a critical point where only one variable, a 
control parameter, determines the macroscopic behavior of the 
system [82], [83]. This is an important issue because systems 
near phase transitions show universal phenomena [84]–[88]. 
Near the critical point, correlations between neurons would 
occur across all scales, leading to optimized communication 
[89]. Experimental evidence for this notion has accumulated 
during the past decades, and power laws and scaling relation-
ships have been found in human neuroimaging time series 
[90], [91]. However, it should be noted that with more atten-
tion on this new direction, there are a variety of distributions 
(e.g., stretched exponential, Rayleigh, double exponential, and 
lognormal) that are found in neurophysiological time series 
[26], [92], [93]. Hence, there may be a need to carefully dis-
ambiguate the causes of these heavy-tailed distributions found 
in the brain and behavior. From the dynamical system per-
spective, endogenous dynamics are thought to be generated 
by the dynamic instabilities that occur near bifurcations, that 
is, dynamics that accompany a loss of stability when certain 
control parameter(s) reach a critical value [26], [94]–[96]. The 
eigenmodes of neuronal (effective) connectivity that define 
the stability of the resting state give rise to scale-free fluc-
tuations that emerge from the superposition of the few modes 
that decay slowly. These slowly fluctuating (unstable) modes 
have Lyapunov exponents that are close to zero. This occurs 
when systems approach transcritical bifurcations (or stochas-
tic Hopf bifurcations when the eigenvalues are complex [97],
[98] and show critical slowing [93]). Put simply, this means 
that the ensuing networks are defined by trajectories that have 
fixed points close to instability and that the neuronal fluctua-
tions persist over longer timescales to generate the patterns 
responsible for the emergence of intrinsic brain networks. The 

Spectral and stochastic 
DCMs furnish estimates
of the effective 
connectivity that
underlies intrinsic
brain networks.
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amplitudes of these eigenmodes or patterns correspond to the 
order parameters described in the “State-Space Modeling and 
Effective Connectivity” section. The (negative) inverse of the 
Lyapunov exponent corresponds to the characteristic time con-
stant of each mode, where each mode with a small exponent 
(large time constant) corresponds to an intrinsic brain network 
or resting-state network.

Causal modeling of neuronal dynamics
The past decade has seen the introduction of graph theory to 
brain imaging. Graph theory provides an important formula-
tion for understanding dynamics on structure. Developments 
in this area have progressed on two fronts: 
understanding connections between graphs 
and probability calculus and the use of 
probabilistic graphs to resolve causal inter-
actions. The probabilistic graph frame-
work goes beyond classical constructs by 
providing powerful symbolic machinery 
and notational convenience (e.g., the use 
of dependency graphs to resolve Simpson’s 
paradox; see “Simpson–Yule Paradox”). 
Within this enterprise, one can differentiate at least two 
streams of work: one based on Bayesian dependency graphs or 
graphical models called structural causal modeling [99] and 
the other based on causal influences over time, which we con-
sider under DCM. Structural causal modeling originated with 
SEM [47] and uses graphical models (Bayesian dependency 
graphs or Bayes nets) in which direct causal links are encoded 
by directed edges. These tools have been largely developed by 
Pearl [22] and are closely related to the ideas in [100]–[102]. 
An essential part of network discovery in structural causal 
modeling is the concept of intervention: eliminating connec-
tions in the graph and setting certain nodes to given values. 
Structural causal modeling lends a powerful and easy-to-use 
graphical method to show that a particular model specifica-
tion identifies a causal effect of interest. Moreover, the results 
derived from structural causal modeling do not require spe-
cific distributional or functional assumptions, such as multi-
variate normality, linear relationships, and so on. However, 
it is not the most suitable framework to understand coupled 
dynamical systems because it is limited in certain respects. 
Crucially, it deals only with conditional independencies in 
DAGs. This is problematic because brains perform computa-
tions on a directed and cyclic graph. Every brain region is 
connected reciprocally (at least polysynaptically), and every 
computational theory of brain function rests on some form of 
reciprocal or reentrant message passing. Another drawback is 
that the causal calculus of structural causal modeling ignores 
time. Pearl argued that a causal model should rest on function-
al relationships between variables. However, these functional 
relationships cannot deal with (cyclic) feedback loops. Pearl 
[14] argued for DCMs when attempting to identify hysteresis 
effects, where causal influences depend on the history of the 
system. Interestingly, the DAG restriction can be finessed 
by considering dynamics and temporal precedence within 

structural causal modeling. This is because the arrow of time 
can be used to convert a directed cyclic graph into an acy-
clic graph when the nodes are deployed over successive time 
points. This leads to SEM with time-lagged data and related 
autoregression models, such as those employed by Granger 
causality described previously. As established in the previous 
section, these can be regarded as discrete time formulations of 
DCMs in continuous time.

Structural and dynamic causal modeling
As already established, in relation to the modeling of fMRI 
time series, DCM refers to the (Bayesian) inversion and com-

parison of models that cause observed data. 
These models are usually state-space mod-
els expressed as (ordinary, stochastic, or 
random) differential equations that govern 
the motion of hidden neurophysiological 
states. These models are generally equipped 
with an observer function that maps from 
hidden states to observed signals [see (1)]. 
The basic idea behind DCM is to formulate 
one or more models of how data are caused 

in terms of a network of distributed sources. These sources talk 
to each other through parameterized connections and influ-
ence the dynamics of hidden states that are intrinsic to each 
source. Model inversion provides estimates of their parameters 
and the model evidence.

We have introduced DCM for fMRI using a simple state-
space model based on a bilinear approximation (extensions 
to, for example, nonlinear [103] and two-state [104] DCM, 
among others, are also available and are in use) to the underly-
ing equations of motion that couple neuronal states in differ-
ent brain regions [32]. Most DCMs consider point sources for 
both fMRI and EEG/MEG data (cf. equivalent current dipoles) 
and are formally equivalent to the graphical models used in 
structural causal modeling. However, in DCM, they are used 
as explicit generative models of observed responses. Inference 
on the coupling within and between nodes (brain regions) is 
generally based on perturbing the system and trying to explain 
the observed responses by inverting the model. This inversion 
furnishes posterior or conditional probability distributions 
over unknown parameters (e.g., effective connectivity) and the 
model evidence for model comparison [105]. The power of the 
Bayesian model comparison in the context of DCM has become 
increasingly evident. This now represents one of the most 
important applications of DCM and allows different hypoth-
eses to be tested, where each DCM corresponds to a specific 
hypothesis about functional brain architectures [106]–[112]. 
DCM has been used mostly for (task-based) fMRI and electro-
physiological dynamics (EEG/MEG/LFPs), but the most recent 
advances have focused on the modeling of intrinsic brain net-
works in the absence of exogenous influence, known as resting-
state fMRI [74]. In the remainder of this section, we briefly 
review these developments and discuss these new mathematical 
models. We also showcase some of their clinical applications to 
neurodegenerative diseases, such as Parkinson’s disease.

Neural pathways are 
flexible, adaptable, 
connected, and moldable 
by changes in our 
environment or by
injury or disease. 
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Dynamic casual modeling of intrinsic networks
There has been an explosion of research examining sponta-
neous fluctuations in fMRI signals (Figure 2). These fluc-
tuations can be attributed to spontaneous neuronal activity, 
which is usually ignored in deterministic models of responses 
to (designed) experimental inputs. Deterministic DCMs are 
cast as multiple-input, multiple-output systems, in which exog-
enous inputs perturb the brain to produce an observed BOLD 
response. In the absence of external inputs, as in the case of 
resting-state fMRI, neuronal networks are driven by activ-
ity that is internal to the system [113]. The generative model 
for resting-state fMRI time series has the same form as (3)
but discounts exogenous modulatory input. It should be noted 
that we can still include exogenous (or experimental) inputs, 

( )u t , in our model. These inputs drive the hidden states and 
are usually set to zero in resting-state models. It is perfectly 
possible to have external (nonmodulatory) stimuli, as in the 
case of conventional functional neuroimaging studies. For 
example, in [114] we used an attention-to-visual-motion par-
adigm to illustrate this point. Figure 3 provides a schematic 
of the resulting stochastic DCM. In contrast to the previous 
section, we adopt a generalized framework in which state 
noise ( )w t  and observation noise ( )e t  are analytic (i.e., non- 
Markovian). This simply means that generalized motion of 
the state noise ( ) ( ), ( ), ( )w w w wt t t t f= o p6 @ is well defined in 
terms of its higher-order statistics. Similarly, the observation 
noise ( ) ( ), ( ), ( )e e e et t t t f=u po6 @ has a well-defined covariance 
(for a more detailed discussion, see [115]). Consequently, the 
stochastic part of the generative model in (1) can be conve-
niently parameterized in terms of its precision (inverse cova-
riance). This allows us to cast (1) as a random differential 
equation instead of a stochastic differential equation, hence 
eschewing Itô calculus [34], [116]. Interested readers will find 
a theoretical motivation for using analytic state noise in [34].
Under linearity assumptions, (1) can be written compactly in 
generalized coordinates of motion as

( ) , , ( )

( ) , ( ),

Dx x u w

y x e

t t

t t

f

h

i

i

= +

= +

u u u u u

u u u u

^

^ h

h

(9)

where D is the block diagonal temporal derivative operator, 
such that the vectors of generalized coordinates of motion 
are shifted as we move from lower orders of motion to higher 
orders [115]. For resting-state activity, (9) takes a very simple 
linear form:

( ) ( ) ( ) ( ) .Dx Ax Cu vt t t t= + +u u u u (10)

This is an instance of a linear dynamical system with qua-
sideterministic behavior [117], [118]. Put simply, the linear 
dynamical system described by (10) is insensitive to the initial 
conditions. For this reason, it can exhibit only a limited rep-
ertoire of behavior: linear systems can contain closed orbits, 
but they will not be isolated; no limit cycles—either stable 
or unstable—can exist, which precludes chaotic behavior. 
Technically speaking, if m  represents the eigenvalues of the 
Jacobian Afx2 =u , that is, Am o o= @ , where @  denotes the 
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FIGURE 2. Citation rates for resting-state fMRI studies. These citations 
were identified by searching for “fMRI*” and “resting state.” (Source: 
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FIGURE 3. This schematic illustrates the forward (dynamic causal) model 
for modeling intrinsic or endogenous fluctuations. The endogenous fluc-
tuations (state noise) are the driving input to the state-space model of ef-
fective connectivity, which is a function of the current neuronal states ( )x t
and the connectivity parameters i that define the underlying structure or 
functional architecture of the model and the random fluctuations ( )w t .
The driving fluctuations cause change in neural activity that can, in turn,
be observed using the observer function h after addition of observation 
noise ( )e t . The associated functional connectivity (e.g., cross-covariance 
function) can be calculated easily from this forward or generative model 
(see Figure S2 in “Measures of Connectivity”) for any given parameters. 
Note that the effective connectivity matrix shown is actually a structural 
connectivity matrix of the famous macaque/CoCoMac. We use it here as a 
schematic for effective connectivity. 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


26 IEEE SIGNAL PROCESSING MAGAZINE | May 2016 |

generalized inverse, then the Lyapunov exponents ( )N m  of this 
linear dynamical system will always be negative. In general, 
the Jacobian is not symmetrical (causal effects are asymmet-
ric); the modes and eigenvalues take complex values. See [119] 
for a detailed treatment of the special case of symmetrical con-
nectivity, in which the eigenmodes of functional and effective 
connectivity become the same. It is worth noting that these 
eigenmodes are also closely related to (group) independent 
component analysis (ICA) except with a rotation based on 
higher-order statistics (for details, see [120]).

There are currently two schemes to invert models of 
the form (9). They differ in what data features they use for 
the parameter estimation. The first inverts data in the time 
domain, and the model is used to predict the time series per se. 

This is referred to as stochastic DCM [116]. The second 
approach makes predictions in the frequency domain and 
is based on fitting second-order data features, such as cross 
spectra. This is referred to as spectral DCM [114], [121]. 
We briefly review both schemes and illustrate their clinical 
applications. For a schematic illustration of DCM of intrinsic 
dynamics, see Figure 4. Figure 5 presents a comparison of the 
two schemes.

Stochastic dynamic causal models
Stochastic DCM entails inverting a model of the form given 
by (10) in the time domain, which includes state noise. This 
requires estimation of not only the model parameters (and any 
hyperparameters that parameterize the precision of generalized 
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FIGURE 4. This schematic shows a DCM that embodies the best effective connectivity—identified using Bayesian model inversion (top left panel)—
among hidden neuronal states that explains the observed functional connectivity, / ( ),t  among hemodynamic responses. This explanation is possible 
because the cross spectra contain all the information about (second-order) statistical dependencies among regional dynamics. Bayesian model inversion 
furnishes posterior estimates for the parameters of each model and provides the associated log model evidence in terms of a variational free-energy 
bound. Because the mapping from functional connectivity to effective connectivity is not objective (there may be many combinations of effective connec-
tivity parameters that induce the same functional connectivity), one can use a Bayesian model comparison (top right panel) to score competing models. 
The model with the highest model evidence can then be selected. Alternatively, one can use Bayesian model averaging to average all possible models 
(bottom right panel). 
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random fluctuations) but also the hidden states, which become 
random (probabilistic) variables. The unknown quantities to 
be estimated under a stochastic DCM are ( ), ,x t} i v= u" ,,
where v  refers to any hyperparameters describing random 
fluctuations. In terms of temporal characteristics, the hidden 
states are time-variant, whereas the model parameters (and 
hyperparameters) are time-invariant.

There are various variational schemes in the literature that 
can invert such models, for example, dynamic expectation 
maximization (DEM) [122] and generalized filtering (GF) 
[34]. There is a subtle but important distinction between DEM 
and GF. DEM calls on the mean field approximation described 
above, that is, it assumes ( )( ) ( ) ( ),x tq q q q} i v= u^ h  whereas 
GF, as the name suggests, is more general in that it does not 
make this assumption. However, both schemes assume a fixed-
form Gaussian distribution for the approximate conditional 

posterior densities (the Laplace approximation). GF considers 
all unknown quantities to be conditionally dependent variables, 
that is, , ,( ) ( )xq q} i v= u , and produces time-dependent con-
ditional densities for all unknown quantities. The time-invari-
ant parameters and hyperparameters are cast as time-variant 
with the prior constraint that their temporal variation is small. 
In brief, this online scheme assimilates log evidence at each 
time point in the form of variational free energy and provides 
time-dependent conditional densities for all unknown quan-
tities. This is in contrast to schemes such as DEM (or deter-
ministic model inversion using variational Laplace) with mean 
field approximations, which assimilates all the data before 
computing the free energy.

“Effective Connectivity in Parkinson’s Disease” shows 
an exemplar data analysis reported in [123] that used sto-
chastic DCM to quantify effective connectivity changes in 
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FIGURE 5. A schematic illustrating the distinction between stochastic and spectral DCM. See the “Biophysical Modeling of Neuronal Dynamics” section for
a detailed description of how these schemes are used to model intrinsic network dynamics.
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Given the marked clinical effect of subthalamic nucleus 
(STN) deep brain stimulation (DBS) in patients with 
Parkinson’s disease, Kahan et al. [123] used stochastic 
dynamic causal modeling (DCM) to estimate the coupling 
between key nodes of the basal ganglia network and to 
study whether this coupling was changed by DBS. In 
Figure S3(a), a network was specified based on human 
and animal literature, and priors were placed on the 
nature of the coupling (excitatory or inhibitory) based on 
the neurochemical systems known to mediate neuronal 
connections. The literature-based anatomical model of the 
motor cortico-striato-thalamic loop was further simplified 
by removing the pallidal nodes and summarizing polysyn-
aptic connections [thick arrows joining the putamen (Put), 
STN, and thalamus (Tha)]. Red arrows indicate excitatory 
coupling, and blue arrows indicate inhibitory coupling. 

Placing priors on the direction of coupling was enabled 
using the two-state DCM (left). In (b), it is shown that 
model inversion yielded coupling parameters on and off 
DBS, demonstrating significant DBS-related changes in 
extrinsic (between-node) coupling throughout the network. 
Paired t-tests revealed significant differences between 
extrinsic coupling on and off stimulation. Corticostriatal, 
direct pathway, and thalamocortical connections were 
potentiated by DBS, whereas STN afferents (lower panel) 
and efferents (upper panel) were attenuated. Note the dif-
ference in scale between the upper and lower panels. 
This is because the STN was modeled as a hidden node 
that was not measured with fMRI. Using a series of regres-
sion models, (c) shows the modulatory effects of DBS on 
connectivity to predict the clinical improvements seen in 
the patient cohort. (See [123] for more details.)

Effective Connectivity in Parkinson’s Disease
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FIGURE S3. The summary of data analysis reported in [123] using stochastic DCM in Parkinson’s disease under DBS.
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Parkinson’s disease. Depleted of dopamine, the dynamics 
of the Parkinsonian brain impact on both action and resting 
motor activity. Deep brain stimulation (DBS) has become an 
established means of managing these symptoms, although 
its mechanisms of action remain unclear. Using stochastic 
DCM, Kahan et al. [123] modeled the effective connectiv-
ity underlying low-frequency BOLD fluctuations in the rest-
ing Parkinsonian motor network. They were particularly 
interested in the distributed effects of DBS on cortico-sub-
cortical connections. Specifically, they showed (see Figure 
S3 in “Effective Connectivity in Parkinson’s Disease”) that 
subthalamic nucleus (STN) DBS modulates all major com-
ponents of the motor cortico-striato-thalamo-cortical loop, 
including the corticostriatal, thalamocorti-
cal, direct, and indirect basal ganglia path-
ways and the hyperdirect STN projections. 
The strength of effective STN afferents 
and efferents was reduced by stimulation, 
whereas corticostriatal, thalamocortical, 
and direct pathways were strengthened. 
Remarkably, regression analysis revealed 
that the hyperdirect, direct, and basal gan-
glia afferents to the STN predicted clinical 
status and therapeutic response to DBS; however, suppression 
of the sensitivity of the STN to its hyperdirect afferents by 
DBS may subvert the clinical efficacy of DBS. These findings 
highlight the distributed effects of stimulation on the resting 
motor network and provide a framework for analyzing effec-
tive connectivity in resting-state functional MRI with strong 
a priori hypotheses.

Spectral dynamic causal models
Although the stochastic models in (10) and their inversion in 
the time domain provide a useful means to estimate effec-
tive connectivity, they also entail the estimation of hidden 
states. This poses a difficult inverse problem that is compu-
tationally demanding, especially when the number of hidden 
states becomes large. To finesse this problem, a DCM based 
on a deterministic model that generates predicted cross 
spectra was explored [114], [121]. This scheme provides a 
constrained inversion of the stochastic model by param-
eterizing the spectral density neuronal fluctuations. This 
parameterization also provides an opportunity to compare 
parameters encoding neuronal fluctuations among groups. 
The parameterization of endogenous fluctuations means 
that the states are no longer probabilistic; hence, the inver-
sion scheme is significantly simpler, requiring estimation 
of only the parameters (and hyperparameters) of the model. 
The ensuing model inversion in the spectral domain is simi-
lar in spirit to previous approaches described in [26], [98],
and [124]. Put simply, although GF estimates time-depen-
dent fluctuations in neuronal states producing observed data, 
spectral DCM simply estimates the time-invariant param-
eters of their cross spectra. Effectively, this is achieved by 
replacing the original time series with their second-order 
statistics (i.e., cross spectra). This means that instead of 

estimating time-varying hidden states, we are estimating 
their covariance. In turn, this means that we need to estimate 
the covariance of the random fluctuations using a scale-free 
(power law) form for the state noise (resp. observation noise) 
that can be motivated from previous work on neuronal activ-
ity [125]–[127]:

gw(~, i) = aw~
–bw

ge(~, i) = ae~
–be. (11)

Here, ( ) ( ) ( )g X Xx ~ ~ ~= @ represents the complex cross spec-
tra, where ( )X ~  is the Fourier transform of ( )x t , , 1a b i" ,
are the parameters controlling the amplitudes and exponents 

of the spectral density of the neural fluctua-
tions, and f2~ r=  is the angular frequen-
cy. This models neuronal noise with generic 

/f1 c  spectra that characterize fluctuations 
in systems that are at nonequilibrium steady 
state. A linear scaling regime of the spectral 
density in double logarithmic coordinates—
implicit in (11)—is not by itself indicative 
of a scale-free critical process unless c  is 
less than 1.5 Hz (and the regime scales over 

several orders of magnitude). For the human EEG, this is gen-
erally not the case: above 10 Hz,  c = 2.5, and above 70 Hz, 
c  is usually greater than 3.5, which is consistent with a Pois-
son process (see [128] and [129]). However, at low frequencies 
(less than 1.5 Hz), the slope is more shallow, and it is likely 
that the amplitude or power envelopes of faster frequencies are 
scale-free [130, 131] or another heavy-tailed distribution [132]. 
Using the model parameters , , ,A C4i a b" ,, one can simply 
generate the expected cross spectra as follows:

( ) ( ) ( ) ( )y w et t t t7l= +

( )tl expg t fx x2 2= ^ h

gy(~, i) = |K(~)|2 gw(~, i) + ge(~, i), (12)

where )(K ~  is the Fourier transform of the system’s (first-
order) Volterra kernels ( )tl , which are a function of the Jaco-
bian or effective connectivity (see Figure S2). The unknown 
quantities , ,} { i v= " , of this deterministic model can 
now be estimated using standard variational Laplace [133]. 
The resulting inversion provides the free energy bound on the 
log-evidence  ( ( )| )glog p my ~  and approximate conditional 
densities q(}) . p(}|g(~), m). Here ( )gy ~  represents the pre-
dicted cross spectra that can be estimated, for example, using 
an autoregressive model.

An example from aging
Finally, in “Aging and Spectral DCM,” we show an example 
from recent work on aging [134] that used spectral DCM. 
Well-being across the lifespan depends on the preservation 
of cognitive function. It was hypothesized that successful 
cognitive aging is determined by the connectivity within and 
between large-scale brain networks at rest. Spectral DCM 

Spectral and stochastic 
DCMs furnish estimates
of the effective 
connectivity that
underlies intrinsic
brain networks.
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In Figure S4(a), spatial distribution of three independent 
components using group independent component analy-
sis (ICA) (n = 602) are identified as the default-mode net-
work (DMN) (in blue), the dorsal attention network (DAN) 
(in red), the salience network (SN) (in yellow), and the 
peaks of their corresponding nodes (green circles). 
Temporal correlation is between the first eigenvariates of 
the ensuing time series across all nodes and networks. 
Coefficients for how well effective connectivity (white), 
neuronal (green), and hemodynamic (red) parameters 
predict age are shown in (b), and dynamic causal model-
ing parameters with bars (95% confidence intervals) that 
exclude zero are considered as significant predictors. A 
between-network canonical variate analysis is shown in 
(c). More specifically, shown is a heliograph of variate 

loadings for the first canonical variate, where the relative 
sizes of correlations are indicated by the relative length 
of the bars (the dark is positive, and the white is 
negative). These reflect the statistical relationship 
between variables of effective connectivity (connectivity 
profile) and cognitive performance (cognitive profile) 
(r = 0.440, p < 0.001). Variables with low contribution 
(r  < 0.3) are shown as bars with a dashed outline. 
Half-maximum strength of a correlation is indicated by 
dashed rings (outer, r = +0.5; inner, r = –0.5). The corre-
sponding bivariate canonical correlations for three age 
groups are shown in (d). The relationships between con-
nectivity and cognitive profiles are more pronounced for 
older patients, suggesting that performance in older 
adults reflects a preserved connectivity.

Aging and Spectral DCM

FIGURE S4. The summary of between-network connectivity changes over the adult lifespan.
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was used to explain the spectral characteristics of resting-state 
fMRI data from 602 healthy adults in a cohort across ages 
18–88 (www.cam-can.org). The location of the key cortical 
regions in each network was identified by spatial ICA using 
group ICA [120] to extract 20 low-dimensional components. 
The three well-established functional networks, the salience 
network (SN), dorsal attention network (DAN), and default-
mode network (DMN), were then identified by spatial match-
ing to preexisting templates [135]. Effective connectivity was 
assessed within and between these three 
key large-scale networks although, for 
brevity, we have included more interesting 
results only for the between-network con-
nectivity in this review. In brief, a two-step 
process is used in which ICA identifies 
linearly coherent networks, and the (poten-
tially nonlinear) relationship among these 
networks is then tested within a causal 
modeling framework using spectral DCM. This approach has 
been used several times in both task-based and resting-state 
fMRI data [136]–[138].

Using multiple linear regression, it was found that about 
30% of age variance can be predicted (r = 0.544, p < 0.001) 
by 1) increased inhibitory self-connections in SN and DMN, 
2) decreased effective connectivity from DAN to SN, and 
3) increased hemodynamic decay times for all networks 
[Figure S4(b)]. Subsequently, a classical multivariate test 
(canonical variate analysis) was used to determine to what 
degree the DCM parameters predict cognitive performance, 
shown in Figure S4(c). For between-network analysis, the 
corresponding canonical vector suggested that high perfor-
mance across a range of cognitive tasks [high scores of gen-
eral intelligence (Cattell), face processing (Benton Faces), 
memory (story recall), multitasking (Hotel), and response 
consistency (inverse of response variability on simple motor 
task)] was associated with less self-inhibition of the net-
works and a smaller influence of the DMN on SN (r = 0.447, 
p < 0.001). In other words, about 20% of the variance in 
performance—across a range of cognitive tasks studied—
could be predicted from changes in effective connectivity 
between networks. To further investigate whether the rela-
tionship between cognitive performance and connectivity 
was age-dependent, moderation analysis was used. It was 
found that the interaction between age and connectivity 
values (age × connectivity profile) predicted a significant 
proportion of variance in cognitive performance (T(398) =
3.115, p (one-tailed) < 0.001). The direction of the interac-
tion was such that increasing age strengthened the relation-
ship between cognitive and connectivity profiles. This is 
shown in Figure S4(d), where the relationship between cog-
nitive performance and connectivity profile becomes stron-
ger for older age groups. This is an interesting study because 
it used spectral DCM to dissociate neuronal from vascular 
components of the fMRI signal to find age-dependent and 
behaviorally relevant differences in resting-state effective 
connectivity between large-scale brain networks. Taken 

together, the results suggest that maintaining a healthy 
resting-state connectivity becomes increasingly important 
for older adults to maintain high levels of domain-general 
cognitive function and may play a critical role in the mecha-
nisms of healthy cognitive aging.

Summary
Both spectral and stochastic DCMs furnish estimates of the 
effective connectivity that underlies intrinsic brain networks. 

These estimates are based on BOLD data 
acquired at rest using different inversion 
schemes. We suppose that these resting-
state networks emerge from the dynamic 
instabilities and critical slowing near 
transcritical bifurcations. In this setting, 
neuronal activity is modeled with random 
differential equations, which can be esti-
mated using stochastic inversion schemes 

(such as GF in stochastic DCM) or by deterministic schemes 
modeling observed functional connectivity (specifically, the 
cross-spectral densities modeled by spectral DCM).

Discussion
The limitations and challenges of DCM and the implicit 
scoring of large numbers of models have been addressed 
in a number of critical reviews (e.g., [139] and [140]). Their 
key conclusions highlight several issues. First, although the 
modeling assumptions underlying DCM are motivated by 
neuroanatomical and neurophysiological constraints, their 
plausibility is difficult to fully establish. For example, in 
DCM for fMRI, physiological details of the neurovascular 
coupling are potentially important. Many DCMs neglect the 
potential influence of inhibitory activity on the hemodynamic 
response and call on a simplistic account of the metabolic cas-
cade that relates synaptic activity and neuronal metabolism to 
the vasodilatation. In principle, these are issues that can be 
resolved using Bayesian model comparison. In other words, if 
a more complex and complete model is supported by the data, 
one can always optimize the DCM. Examples of this include 
recent trends toward more detailed physiological modeling. 
For example, several extensions are proposed in [141], such as 
an adaptive two-state neuronal model that accounts for a wide 
range of neuronal time courses during stimulation and post-
stimulus deactivation, a neurovascular coupling model that 
links neuronal activity to blood flow in a strictly feedforward 
fashion, and a balloon model that can account for a vascular 
uncoupling between blood flow and blood volume due to vis-
coelastic properties of venous blood vessels.

There are also questions about the robustness of the statisti-
cal (approximate Bayesian) inference techniques employed in 
DCM. For example, it has been argued that 1) the number of 
parameters and the complexity of the models preclude robust 
parameter estimation [140], [142]; 2) Bayesian model compari-
son cannot compare DCMs in the sense that it cannot falsify 
them; and 3) selecting a model based on the model evidence 
does not ensure that it will generalize. All of these concerns 

Resting-state fMRI studies 
show that intrinsic brain 
activity is self-organizing 
and highly structured.
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stem from frequentist thinking and are dissolved within a 
Bayesian framework (see [139] for a detailed discussion). 
There are also several well-founded technical concerns about 
the variational Bayes (VB) schemes employed in DCM. For 
example, the objective function based on the free-energy func-
tional is prone to local maxima that can result in inconsistent 
parameter estimations and model comparisons (e.g., across tri-
als or subjects). There are several experimental studies (e.g.,  
[143]–[147]) that have addressed the reproducibility of DCM 
and provide reassuring experimental validation. There is an 
issue of overconfidence usually associated with VB schemes 
due to the potentially biased inference that results from mean 
field and Laplace approximations to the posterior density. This 
issue has been addressed by simulation studies that compare 
the results of VB with standard (e.g., Gibb’s) sampling meth-
ods. The failures of approximate Bayesian inference are usu-
ally mitigated by formulating the inversion problem in a way 
that eschews brittle nonlinearities.

Given these issues, one obvious alternative is to use either 
exact inference schemes, such as Markov chain Monte Carlo 
(MCMC) or nonparametric methods based on Gaussian 
processes. Both have recently been explored for inverting 
Bayesian hierarchical models. For example, Gaussian process 
optimization was used for model inversion in [148], several 
gradient-free MCMC schemes (e.g., for random walk-based 
Hasting’s sampling, adaptive MCMC sampling, and popu-
lation-based MCMC sampling) were explored in [149], and 
more robust gradient-based MCMC schemes (e.g., for Ham-
iltonian and Langevin MCMC sampling) were extensively 
studied in [150]. However, these alternative and promising 
inference methods are still in an early phase of development 
and validation phase and will require exhaustive experimen-
tal studies to establish validity.

Clearly, most of these issues transcend DCM per se and 
speak to the challenges facing any modeling initiative that has 
to contend with big data and a large model or hypothesis space. 
These challenges have focused recent research on contextual-
izing the inversion of models of single subjects using (empiri-
cal or hierarchical) Bayesian models that distinguish between 
within- and between-subject effects on one hand and the scor-
ing of large model spaces with techniques such as Bayesian 
model reduction on the other. This is an active research field 
with developments nearly every month.

In conclusion, we have used several distinctions to review 
the history and modeling of macroscopic brain connectivity. 
We started with the distinction between functional segregation 
and integration. In functional integration, we considered the 
key distinction between functional and effective connectivity 
and their relationship to underlying models of distributed pro-
cessing. In effective connectivity, we looked at structural and 
dynamic causal modeling while highlighting recent advances 
in the DCM of resting-state fMRI data.

We close with a few words on recent large-scale proj-
ects in neurosciences, for example, the American BRAIN 
Initiative and the European Human Brain Project. These 
initiatives reflect an increasing appreciation of the impor-

tance of neuroscience and the challenges of understanding 
how brains work. Furthermore, they represent initiatives that 
exploit remarkable advances in computer science and neu-
roimaging at many different scales (from the molecular to 
multisubject) and the modeling (and mining) of the resulting 
data. The experience of the systems neuroscience community, 
with the big data obtained from neuroimaging, is reflected in 
this review. This experience highlights the importance of for-
mal models of how data are generated and the computational 
schemes used to evaluate and invert these models. We are just 
embarking on a difficult journey to uncover the governing 
principles of how brains work and their functional (compu-
tational) architectures. Perhaps it is fitting to end with an 
encouraging quote from Abdus Salam (recipient of the Nobel 
Prize in Physics 1979): “Nature is not economical of struc-
tures—only of principles.”
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Magnetic Resonance Imaging

Junning Li, Yonggang Shi, and Arthur W. Toga

I
n 2009, the National Institutes of Health ambitiously 
launched the Human Connectome Project [1] to promote 
engineering capabilities for imaging and analyzing brain 
connections. One of the primarily promoted technologies is 

diffusion magnetic resonance (dMR) imaging, which nonin-
vasively maps brain connectivity at a macroscopic scale by 
measuring water molecules’ anisotropic diffusion constrained 

by neural fibers. Following years of steady advancement, the 
dMR imaging technique has reached unprecedented spatial 
and angular resolution, and its computational analysis meth-
ods, stimulated by growing research needs, have also blos-
somed. This has been achieved by joint contributions from 
various areas, such as signal processing, applied mathemat-
ics, network analysis, and so on. In this article, we outline the 
milestones on this exciting path of interdisciplinary technolo-
gy development with the aim of bringing these advancements 
to engineers outside the medical imaging community.

Structural connectivity of the human brain 
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Introduction
This article covers key components in the workflow to map 
structural connectivity of the human brain, including data 
acquisition, neural fiber orientation modeling, image pro-
cessing, tractography, and applications to brain studies. For 
each topic, basic theories are reviewed, and major break-
throughs and state-of-the-art technologies are discussed. In 
addition to an overview of existing technologies, we also 
attempt to provide an outlook of future challenges in building 
a comprehensive connectivity map that integrates genetic and 
functional information.

dMR imaging
At a microscopic scale, water molecules in an isotropic medi-
um move freely in all directions in a jittery and erratic fash-
ion. This random walk was first noticed in 1827 by Scottish 
botanist Robert Brown, explained physically by Albert Ein-
stein in 1905, and later rigorously modeled as a mathemati-
cal stochastic process by Norbert Wiener. Movement of these 
tiny molecules inspired mathematicians to develop elegant 
theories now widely used not only by financial analysts but 
also by medical engineers to “look” through the human brain 
in vivo at its sophisticated neural network. In an anisotropic 
medium, such as brain tissues containing neuronal fibers, 

water molecules move faster along, rather than across, struc-
tural constraints. By measuring their anisotropic diffusion, 
we can infer the underlying structure of neuronal fibers. 
Figure 1 shows a typical information flow of studying brain 
connectivity using dMR imaging: neural fibers introduce 
anisotropic diffusion (a) and influence magnetic resonance 
(MR) signals generated from spinning protons (b); dMR sig-
nals are collected along many diffusion directions (c) and 
then reconstructed at each voxel location as fiber orientation 
distributions (FODs) (d); local fiber structures are assembled 
and “weaved” together as long fiber tracks (e) to build a net-
work (g) connecting brain cortex regions (f). These networks 
are further investigated for their relationship with the brain’s 
function and development. We elaborate this procedure step 
by step in the following sections.

We first look at how dMR signals are generated. Under-
standing the generation procedure is important for the process-
ing and interpretation of dMR images. It also sheds light on 
the potential limitations and caveats of using dMR images. We 
start with the excitation of protons in a magnetic field and then 
explain how diffusion affects signal resonation, with formu-
lations in the so-called k-space and q-space. The relationship 
between diffusion and magnetic resonation is the key to dMR 
imaging and its data analysis.

(b)

(a)

Across

Along

B

M

(c)

(d) (e)

(f)
(g)

FIGURE 1. The information flow of structural connectivity analysis. (a) Water molecules move faster along, rather than across, neuronal fibers. (b) Diffu-
sion affects the electromagnetic waves radiated by precessing protons. (c) dMR imaging captures diffusion signals along different directions and forms 
images. (d) FODs are reconstructed from diffusion images. (e) Fiber tracks are simulated from FOD images. (f) The brain cortex is segmented into many 
regions using structural MR images, for example, with FreeSurfer software [2]. (g) Connectivity networks between cortex regions are constructed from 
fiber tracks. 
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Nuclear magnetic resonance
A proton/hydrogen, spinning with its positive electrical charge, 
forms a tiny magnetic moment along its spin axis. Under nor-
mal circumstances, protons spin randomly in all directions 
[Figure 2(a)]. In the presence of an external magnetic field, 
they align with the field, getting polarized [Figure 2(b)]. In this 
case, if the spin axis is perturbed away from the field direction, 
it will rotate in a spiral path to gradually realign with the mag-
netic field [Figure 2(c)]. This is analogous to the motion of a 
rotating gyroscope hung on a rope. Perturbation from the equi-
librium is called excitation, and restoration is called relaxation.

The spiral return to equilibrium consists of three dif-
ferent motions. The first motion is precession [Figure 2(d)]
around the field direction at the Larmor frequency (named 
after Sir Joseph Larmor, 1875–1942) ,B~ c=  where c

is the gyromagnetic ratio [3]. This Larmor precession is 
essential in MR imaging. We can transmit radio waves at 
this frequency to excite protons, and the excited protons 
will in return radiate electromagnetic waves at the same 
frequency in their precession. To maximize the radiated 
energy, protons are flipped by 90° in excitation, perpen-
dicular to the field direction. This resonated radio wave 
is collected as a function of time, and its Fourier trans-
form shows a peak near the Larmor frequency, reflecting 
protons’ spin densities. If a magnetic field with a linear 
gradient is applied, then protons’ spatial locations will be 
“encoded” into their precession frequencies. In this way, we 
can recover the spatial density of spinning protons in the 
Fourier domain, as elaborated later in the “k-Space” and 
“q-Space” sections. The other two motions are the preces-
sion plane’s movement toward the equilibrium and shrink-
age of the precession radius. Usually, they are exploited to 
produce an image contrast ratio [3], but we do not go into 
their details here.

k-Space
If a gradient g  is added to a uniform magnetic field B , then 
protons at location r  precess at their local Larmor frequency 

B g rc + $^ h. The radio wave they radiate, as a function of 
time, is ,( )s r e e ( )g ri Bt i tc c $  where the magnitude ( )s r  reflects the 
amount of local magnification and is the interest of imaging. 
Because the carrier wave ei Btc  can be removed with a heterodyne 
mixer in the receiver [3], it effectively reduces to ( )s r e ( )g ri tc $ .
(A heterodyne mixer shifts signal frequency by multiplying it 
with another wave.  If two signals at frequencies f1  and f2 ,
respectively, are mixed with multiplication, the result is a 
mixture of frequencies f f1 2+  and f f1 2- . After removing 
the unwanted frequency with a high- or low-pass filter, a sig-
nal with shifted frequency is produced.) Instead of naturally 
referencing with time t , Sir Peter Mansfield and Peter Gran-
nell in 1973 introduced a vector k gtc= [4]. In k-space [5],
the total signal collected from all protons in volume V  turns 
out to be

) .( )S(k s r e dr
V

ik r=8 $ (1)

It is clearly shown in (1) that local signal ( )s r  can be 
reconstructed from ( )S k  with the Fourier transform [4]. This 
relationship lies in the heart of spatial reconstruction, which  
Mansfield used to develop the imaging techniques that earned 
him a Nobel Prize.

q-Space
In a homogeneous field, the exchange of protons between 
different locations does not affect local signals because they 
all precess at the same Larmor frequency in the same phase 
after their initial excitation. When protons precess at different 
phases spatially, then their movement in and out of a loca-
tion will mix phases and reduce signal magnitude. If we can 
encode a proton’s displacement into its phase shift, we will be 
able to quantitatively deduce its displacement from the signals 
reduced by phase mixture.

In 1965, Stejskal and Tanner [6] invented a widely used 
scheme that makes such a deduction of diffusivity from MR 
possible, as shown in Figure 3. After excitation, a strong gra-
dient pulse g  is applied for a short duration d  to establish a 

(a)

Protons Spin Magnetified Protons

Magnetic Field B B B

Precession

ω
M

M

Spin

(b) (c) (d)

FIGURE 2. Nuclear MR. (a) Protons spin randomly, each forming a tiny magnetic moment. (b) In the presence of magnetic field B, protons align with 
the field. Some spin “down” against the field, and more spin “up” along the field. The net magnification is along the field. (c) If a proton is perturbed 
from the field direction, it will return to its equilibrium in a spiral path, similar to a rotating gyroscope hung on a rope. It radiates electromagnetic waves 
during this process. (d) The spiral path has a precession component, and the frequency is determined by the Larmor equation ,B~ c=  where c is the 
gyromagnetic ratio [3]. In the human body, there are numerous protons that can be used to generate MR signals.
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phase gradient q. If d  is so short that protons have hardly 
displaced before the establishment of q, protons at location 
r0  will almost instantly receive a phase shift of q r0$ . Later, 
a radio frequency pulse is transmitted to flip the spinning 
protons by 180°. This flipping technique, invented by Hahn 
in 1950 [7], reverses the phase gradient spatially and negates 
the initially received phase shift to q r0- $ . After time x  of 
the first gradient pulse, a second gradient pulse is applied to 
remove the reversed phase gradient. After migrating to loca-
tion r1 , protons will receive a phase shift q r1$ . In this way, 
the displacement from r0  to r1  is translated to a net phase shift 
q r r1 0-^ h. If we denote the displacement vector as v r r1 0/ - ,
then the net phase shift is solely determined by the displace-
ment vector, independent of the initial location. Diffusion 
duration is controlled by the interval x  between the two gra-
dient pulses.

The total signal ( )qsx  in the Stejskal–Tanner experiment 
is integration of all possible displacement signals in terms of 
eiq v$  and weighted with the average displacement probabil-
ity ( ) ( ) ( )P v P r r v p drr"= +x x8 , where ( )p r  is the spin 
density at location r , and ( )P r r v" +x  is the probability of 

moving from r  to r v+  after time x. ( )P vx  averages displace-
ment probability over start locations and is called the ensemble 
average propagator. If s0  is the signal without the two gradient 
pulses, then ( )qsx  relates to s0  through the superposition of all 
phase shifts as

( ) ( ) .qs s P v e dviq v
0=x x8 $ (2)

There is a close resemblance between (2) and (1), and simi-
larly we call the space formed by a phase gradient q-space. The 
ensemble average diffusion propagator ( )P vx  can be obtained 
from ( )qsx  with the Fourier transform. Note that (2) assumes 
that the two gradient pulses are so short that their phase shifts 
have perfectly tagged the protons’ locations before the protons 
have hardly displaced. However, this is not true in practice, so 
(2) is inaccurate in most cases.

The diffusion propagator of isotropic media is a Gauss-
ian distribution with variance ,D2 x  where D  is the diffusion 
coefficient. Because the Fourier transform of a Gaussian dis-
tribution is still a Gaussian, the diffusion signal in this case 
also has a Gaussian format: ( )s q s e q D

0
2

=x
x- . As mentioned 

FIGURE 3. The paradigm of Stejskal and Tanner’s [6] diffusion MR imaging scheme. The first row shows the phase changes of a single spinning proton. 
Before application of the first gradient pulse g1 , its phase is zero. During g1 , it receives a phase shift q r0$  at its location r0 . The 180° pulse reverses the 
phase gradient and negates the initially received phase tag to q r0$- . Immediately before application of the second gradient pulse, the proton has moved 
to a new location r1 , and the second gradient pulse exerts a phase shift q r1$  on the proton. The net phase shift the proton receives is q r r1 0$ -^ h. If we 
define displacement vector v r r1 0/ - , then the phase shift is q v$ , independent of the starting location r0 . The second row shows how diffusion causes 
phase incoherence among protons at the same snapshot time points of the first row. Due to displacement, protons cannot restore their initial phases, 
with some shifted forward and some backward, so their phases become incoherent, and the signal is reduced. 
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previously, this equation is inaccurate because of the 
unneglectable gradient pulse duration d . Adjusted for rect-
angle gradient pulses, s qx ^ h becomes s e /q D

0
32 x d- -^ h. The 

/q 32 x d-^ h term determines how sensitive ( )qsx  is to the 
diffusion coefficient D , and Basser, Mattiello, and Le Bihan 
[8] coined the name b-value for it. The direction of a q  vector 
can be assigned to the b-value derived from it. In this way, we 
get a b vector from a q  vector.

There are several schemes to sample b vectors. Sampling 
b vectors of the same magnitude is called single-shell acqui-
sition. Sampling b vectors of multiple magnitudes is called 
multishell acquisition. Sampling b vectors placed on a three-
dimensional lattice is called diffusion spectrum imaging.

Data acquisition
Innovative engineering ideas are often needed to turn 
elegant theories into practical, efficient, and affordable 
technologies, and such is the case of dMR image acquisi-
tion. One of the major difficulties encountered with dMR 
imaging is its acquisition time because it essentially col-
lects data for a six-dimensional space: three dimensions 
for k-space and the other three dimensions for q-space. 
In the early days of MR imaging, it typically took 10–20 
minutes to scan a nondiffusion structural image of 64 ×
64 pixels [9]. Currently, the protocol developed in the 
Human Connectome Project takes about 55 minutes to 
twice scan a complete brain at the 1.25-mm resolution 
(about 150 × 150 × 150 pixels) in 270 different diffusion 
directions [10]. This amazing speed was achieved with a 
series of breakthroughs.

Echo-planar imaging
Echo-planar imaging (EPI) was invented by Sir Peter Man-
sfield in 1977 [11]. This technique made it possible to obtain 
an individual MR slice in the time frame of 50–100 mil-
liseconds. After selectively exciting a slice of an image with 
the radio frequency determined by a gradient pulse along 

the z  direction, EPI efficiently tra-
verses k-space by modulating the field 
gradient in the x  and y  directions, as 
illustrated in Figure 4. It first sends 
negative gradient pulses in both the x
and y  directions to initialize the scan at 
the left lower corner in k-space. It then 
alternatively switches between posi-
tive and negative gradients along the 
x  direction, iterating forth and back in 
k-space. Meanwhile, whenever it revers-
es the x-gradient direction, it sends a 
short positive gradient pulse along the 
y  direction to start the scan with a new 
y  coordinate in k-space. In this way, 
k-space is iterated in a zig-zag manner, 
and a slice of the image can be scanned 
in one excitation. Because gradient 
pulses along the x  direction control 

protons’ precession frequencies and those along the y direc-
tion shift their phases each time, they are called the frequen-
cy- and phase-encoding directions, respectively. Note that it 
takes a much longer time for EPI to move one step along 
the phase-encoding direction than the frequency-encoding 
direction. This will make artifacts more pronounced along 
the former than the latter, as discussed in the section “Arti-
facts of dMR Imaging.”

Parallel imaging
Parallel imaging exploits receivers’ localized spatial sensi-
tivities to reconstruct an image with reduced sampling in 
k-space. Ordinarily, if k-space is undersampled, the recon-
structed image in a reduced field of view shows an over-
lapping effect, that is, aliasing. In the aliased view, a pixel 
value is the linear combination of its aliasing pixels in the 
full view. If multiple receiver coils are placed at different 
locations, each of their reconstructed images takes a dif-
ferent linear combination because of their different spatial 
sensitivities. With many different linear combinations, it is 
possible to separate all the aliasing pixels provided that the 
number of receiver coils is at least the undersample rate. The 
separation can be achieved in two ways: either in the image 
domain, as with sensitivity encoding (Figure 5) [12], or in 
the frequency domain, as with the generalized autocalibrat-
ing partially parallel acquisitions [13].

Multiband multislice imaging
Multiband multislice imaging excites multiple image slices 
by transmitting multiband radio frequencies and reconstructs 
the excited slices with signals collected by multiple receivers 
[14]. Because the signals received by each coil are a unique 
linear combination of the excited slices, they can be separated 
as long as the number of receivers is not fewer than the num-
ber of excited slices. The multiband multislice technique can 
be used together with parallel imaging to achieve two-way 
acceleration [15].

RF
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FIGURE 4. EPI: (a) gradient pulses and (b) the corresponding path in k-space. In the company of a 
gradient pulse in the z direction [(a), blue], a radio frequency selectively excites a slice of an image. 
Negative gradient pulses [(a), yellow)] along the x and y directions then initialize the scan at the low-
er left corner of k-space, as shown by the yellow arrow in (b). As the x gradient switches [(a), red], it 
travels back and forth in k-space. Whenever the x gradient changes direction, a short gradient pulse 
in the y direction [(a), green] is applied to move the scan in the x direction to a new y coordinate in 
k-space. If data are sampled at s0, s1 . . ., sn in each scan of an x-direction line, then it takes time Tx to 
move one step in the x direction and Ty in the y direction. Ty is much longer than Tx .
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Compressed sensing
In its theory, compressed sensing ensures that data sparse in a 
domain can be reconstructed without much information loss by 
sporadically sampling them in another almost random domain. 
Because there is only a limited number of crossing fibers at one 
voxel, it is possible to reconstruct diffusion displacement dis-
tribution in a compressed manner. To further accelerate dMR 
imaging with compressed sensing, various sparse bases have 
been proposed, including wavelets [16], spherical ridgelets 
[17], and adaptive dictionaries [18].

Artifacts of dMR imaging
As shown in the previous sections, dMR imaging encodes 
protons’ locations by their precession phase and recovers 
spatial information, such as voxel location and displacement, 
by transforming signals from the frequency domain, such as 

k-space or q-space, to the spatial domain. This is the essen-
tial rule of MR imaging. When assumptions establishing the 
phase–location relationship are violated, then artifacts come 
in, and some might be very insidious. Here, we briefly go 
through some of them without diving into details of their 
related MR pulse sequences but explain from k-space and 
q-space perspectives.

Gibbs ringing
Gibbs ringing, also known as truncation or spectral leakage,
appears as spurious ripples around sharp edges. It is a con-
sequence of reconstructing images from MR signals with the 
Fourier transform. With an infinitely wide frequency band, 
any signal can be almost perfectly represented. However, in 
MR imaging practice, we can sample only a finite number 
of frequencies. As a result, the high-frequency oscillation 

Receiver 1 Receiver 2
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FIGURE 5. Parallel imaging with sensitivity encoding [12]. Suppose that we have m = 4 receivers and an image acquisition undersample k-space by two 
in both the x and y axes. Each pixel in the reduced field of view has n 4=  aliasing pixels. The n aliasing pixels , ,p pn1 g  are linearly combined with a 
sensitivity matrix Wm n#  in each of the reconstructed images, resulting in , ,a a1 2g  in the reduced field of view. The full-view image can be recovered by 
solving a linear problem for each of the aliased pixels.

(a) (b) (c) (d)

FIGURE 6. Gibbs ringing. (a) When sharp edges are approximated with a truncated Fourier series, the missing high-frequency components produce 
ripples around the edges. (b) An MR image with Gibbs ringing. (c) The same image low-pass filtered. (d) The same image corrected with a total-variation 
method. [(b)–(d) are reprinted from [20] with permission.] 
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required to represent sharp edges is truncated, and such 
truncation shows in the reconstructed images as ripples near 
high-contract edges, as shown in Figure 6.

Because fewer samples are usually taken in the phase-
encoding direction, the Gibbs artifact is most prominent 
along this direction. One remedy is to increase the number of 
phase-encoding steps or reduce the field of view. However, it 
can never be eliminated because it fundamentally lies in the 
Fourier reconstruction rule of MR imaging. Low-pass filter-
ing in k-space [19] is a straightforward postprocessing method 
to minimize Gibbs ringing, but this may blur the image and 
lower its quality. More complicated methods, such as total 
variation [20], have also been developed.

Geometric distortion
As EPI accelerates imaging speed, it also brings a very 
insidious artifact: geometric distortion. With a homogenous 
gradient field, the protons’ spatial locations can be linearly 
mapped to their precession phase or frequency. What will 
happen if the gradient varies spatially, or equivalently, and 
the magnetic field is nonlinear? The result is not additive 
noise overlaid on a “noise-free” image, but spatial distortion 
because the mapping between the spatial location and signal 
phase becomes nonlinear. Even with a scanner producing 
a perfect linear magnetic field, tissues with different mag-
netic susceptibility still introduce local nonlinear gradients.

Geometric distortion is far more obvious in the phase-
encoding direction than in the frequency-encoding direction. 
If there is a nonlinear background gradient other than the con-
trolled one, it shifts the protons’ precessions during the image 
acquisition procedure, and this effect accumulates. For the 
frequency-encoding direction, the accumulation time for each 
sample step is just the interval between two sampled points. 
For the phase-encoding direction, the accumulation time for 
each scan line is the interval between the start time points of 
two lines. This is much longer than that for the frequency-

encoding direction and consequently accumulates much more 
distortion effect. Distortion along the frequency-encoding 
direction usually is at the subvoxel level, whereas along the 
phase-encoding direction, it could be three to ten voxels.

Geometric distortion can be corrected by unwarping with 
an estimated background field map [21]. Distortion stretches 
regions where the unwanted background gradient is along the 
encoding direction and squeezes where it is against. If the 
same image is scanned twice, with opposite encoding direc-
tions, then it will experience two opposite distortions. With the 
two distorted images, it is possible to estimate the distortion 
field [22], as shown in Figure 7. Stretched regions can be bet-
ter restored than squeezed regions because they still hold all 
intensity information.

Eddy currents
A time-varying magnetic field generates an electrical field, 
and, in turn, a time-varying electrical field generates a 
magnetic field. When strong magnetic gradient pulses are 
switched on and off rapidly, which is common in dMR imag-
ing, they induct electrical currents on the conductive surface 
of MR scanners. The currents, called eddy currents, may per-
sist and produce a magnetic gradient other than the controlled 
one. As explained previously, such an extra gradient will lead 
to geometric distortion.

It is better to suppress the effect of eddy currents dur-
ing acquisition rather than during postprocessing. It can be 
reduced first at the source with shielded gradient coils and 
further by using a special twice-refocused spin echo [23]. It 
can also be corrected during the postprocessing stage with an 
estimated field map.

Fat shift
So far, we have assumed that all protons have the same 
gyromagnetic ratio c , so in a magnetic field with a 
homogeneous gradient, their Larmor frequency should be 

(a) (b) (c)

FIGURE 7. An example of geometric distortion. (a) Two diffusion MR images collected with opposite phase-encoding directions. (b) The estimated field map 
from (a) by nonlinear registration. (c) The corrected image. (Figure reprinted from [22] with permission.) 
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linearly associated with their location. However, we also 
have a considerable amount of fat in the scalp whose pro-
tons precess with a much higher gyromagnetic ratio, in 
long chains of carbons with one to three hydrogen atoms. 
Because spatial location in MR imaging is encoded with 
phase or equivalently frequencies, fat signals in the recon-
structed image will not appear additively at the location of 
scalp but, instead, map to locations where water protons 
precess with the same Larmor frequency as they do. In a 
magnetic field of 3 T, fat protons precess with a frequency 
400 Hz higher than water protons. The phase-encoding 
dimension of a typical EPI has around 30 Hz/pixel, so the 
400-Hz difference will show as a shift of a dozen pixels in 
the phase-encoding direction.

There is another reason that fat shift is more harming to 
dMR imaging than other modalities. The diffusion coefficient 
of fat is much lower than that of water, so its signal attenuation, 
according to the equation S S e bD

0= - , is stronger than that of 
water protons. Therefore, fat shift appears as bright curved 
lines in dMR images or as dark lines in derived diffusion coef-
ficient images, as shown in Figure 8.

This fat-shift effect can be suppressed by various meth-
ods, and there is no simple answer to which is best. The most 
widely used is to first excite fat protons at their frequency and 
remove their phase coherence with a dephasing gradient pulse 
before imaging. Although they still spin and precess, as the fat 
protons are dephased, their MR signals become very weak in 
comparison with those of water protons.

Reconstruction of FODs
Diffusion signals captured by dMR imaging distinguish 
from fibers’ spatial distribution in the following senses. 
First, they reflect the Brownian motion restricted by neu-
ronal fibers rather than neuronal fibers themselves. Sec-
ond, they are the average of diffusion signals within voxels, 
not a detailed microscopic image. The voxel resolution of 
dMR images is usually 2 mm, and that which was acquired 
in the Human Connectome Project is 1.25 mm [25]. On the 

other hand, the diameter of the axon is at the micrometer 
level [26]. Therefore, it is impossible to reconstruct the exact 
fiber structure with dMR images. However, it is possible to 
estimate statistical properties of neuronal fibers from dMR 
images by modeling diffusion properties of brain tissues. 
As an inverse problem, such estimation topically involves a 
representation of FODs and a forward model to relate FODs 
to diffusion signals. After briefly introducing two popular 
representations of FODs, diffusion tensors and spherical 
harmonics, we discuss the essential part of reconstruction: 
signal generation models.

Diffusion tensors
In the early 1990s, it was feasible to scan the brain only 
in a few directions. The limited angular resolution did not 
support complicated models, so FODs were depicted with 
the most concise anisotropic model: Gaussian distributions 
determined by symmetric, positive definite matrices, which 
are called diffusion tensors [8]. The principal eigenvector of 
a diffusion tensor reflects the dominant fiber direction, and 
its eigenvalues characterize rotation-invariant properties. 
The tensor model is unable to effectively account for cross-
ing fibers, as shown in Figure 9. In the presence of cross-
ing fibers, it usually reduces to a nearly isotropic diffusion 
“ball” or a thin and round “plate.” Such a side effect will lead 
fiber track simulation to propagate in the wrong directions 
when fibers actually cross each other, which is not rare in 
the brain. To solve this problem, high-order diffusion tensors 
have been proposed [27].

Spherical harmonics
Breakthroughs in dMR imaging have made it practical to 
scan the brain in a hundred or more directions in a reason-
able time, resolving the problem of crossing fibers [10]. To 
fully utilize such high angular resolution in data acquisition, 
a probabilistic distribution F  defined on a unit sphere S2  has 
been employed, replacing diffusion tensors. Similarly, every 
smooth function in a linear space can be represented with 

(a) (b)

FIGURE 8. An example of fat shift. (a) An image with fat shift (left) and the derived apparent diffusion coefficient (ADC) image (right). (b) An image of the 
same subject with fat shift suppressed (left) and the derived ADC image. (Figure reprinted from [24] with permission.) 
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a set of sine and cosine functions, and a smooth spherical 
function can also be represented with a set of orthonormal 
functions oscillating on the sphere at different frequencies, 
that is, spherical harmonics [28], as shown in Figure 10. The 
more frequency bands are employed, the more details can 
be represented. Because spherical harmonic functions are 
essentially polynomials, they are interchangeable with high-
order tensors [27].

The purpose of dMR imaging is not only to estimate diffu-
sion coefficients but also to relate with underlying FODs and 
tissue composition. Because it is an ill-posed inverse problem, 
such estimation must be done with highly simplified signal 
generation models. As an emerging field under active explo-
ration and also due to a lack of validation with microscopic 
images, researchers have not reached agreement, and many 
issues are still controversial.

Given an FOD F  and a diffusion model H  for fibers, the 
diffusion signal is the convolution of F  and H  on a unit sphere: 
F HS2*  (where S2*  denotes spherical convolution) plus contri-
butions from other tissues. The estimation of F  relies on diffu-
sion models for neuronal fibers and other restrictive biological 
structures. A comprehensive analysis [29] has proposed the 

following three types of components to characterize dMR sig-
nals: intra-axonal compartments, extra-axonal compartments, 
and highly restricted compartments. The total diffusion signal 
is approximated by the sum of the three components. It should 
be noted that such models are just an abstraction and simpli-
fication of the underlying complicated microscopic structure. 
There are also different options. For example, another study 
[30] showed that highly restricted compartments are unneces-
sary and contribute little to dMR signals.

The intra-axonal compartment represents contributions 
from neuronal fibers. A neuronal fiber, a thin and long 
geometric object, can be abstracted as a stick [Figure 11(a)]
that allows only water molecules to move along its longi-
tudinal direction [31] or as a slim cylinder [Figure 11(b)]
that allows limited transverse motion [32]. For the cylin-
der model, fiber diameters can be further weighted with a 
random distribution, such as the gamma distribution [33],
to handle their inhomogeneity. However, the estimation of 
axon diameters is a difficult issue and possible only with 
very high gradients [34].

The extra-axonal compartment ac  counts for hindered diffu-
sion not directly related to neuronal fibers. Because they should 

(a) (b)

FIGURE 9. A patch of an FOD image represented with (a) eighth-order spherical harmonics and (b) second-order diffusion tensor. For the spherical 
harmonic representation, FOD values in different directions are shown as radius length, and each direction is color coded by linearly combining the red, 
green, and blue colors according to the x, y, and z components of unit directional vectors. For the diffusion tensor representation, FODs are rendered as 
ellipsoids and color coded according to their principal eigenvector. Diffusion tensors cannot faithfully represent crossing fibers.

Zero Order

Second Order

Fourth Order

FIGURE 10. Spherical harmonics at the zero, second, and fourth orders. Function values are color coded from blue (low) to red (high). 
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not have a dominant direction, they could 
be modeled as unbounded homogeneous 
material [Figure 11(c)] with unknown dif-
fusivity d [31] or an unknown diffusion 
tensor D [Figure 11(d)] [32].

The highly restricted component is 
for water molecules trapped in such tiny 
structures that a magnetic field gradient 
can hardly affect their diffusion signals. 
Their diffusion profile can be treated as 
a small ball [Figure 11(e)] [29] or, more 
restrictively, a “dot” [Figure 11(f)] that 
completely prevents water molecules 
from moving [29], [35].

Figure 12 shows that diffusion models affect reconstruction 
results significantly. In this example, the stick–ball–dot model 
solved with convex optimization [35] yields sharper and more 
stable results.

FOD image processing
Reconstruction of FODs ends at the stage of extracting voxel-
wise fiber information from dMR images. Afterward, process-
ing will not directly handle dMR images but, in most cases, 
directly work with FOD images. Tasks applicable to ordinary 
scalar-valued images, such as enhancement, segmentation, 
and registration, can also be performed with FOD images. In 
this article, we do not discuss these image processing tasks 
themselves, but focus on a fundamental level: manifold struc-
tures of FODs. Manifold structures not only are the driving 

force behind many image processing tasks but also need spe-
cial treatment for FODs.

Many image processing methods are built on interaction 
between voxel values. For example, in image smoothing, 
neighboring voxels exert forces on the central one to make 
its value gradually coherent with theirs. By defining different 
driving forces, various effects can be achieved [38]. In image 
registration, voxel-interaction forces between two images 
drive them to spatially deform and gradually become similar 
to each other. Even interpolation involves this kind of voxel 
interaction. The interpolated value can be regarded as the one 
in balance with the weighted forces from its neighbors. In gen-
eral, many image processing methods can be formulated as 
the minimization of an energy function involving interaction 
forces between voxels.

Intra-Axon Extra-Axon Restricted Component

(a)

Stick

(c)

Isotropic

(e)

Ball

(b)

Cylinder

(d)

Tensor

(f)

Dot

FIGURE 11. (a)–(f) Diffusion models for reconstructing FODs. 

(a) (b) (c) (d)

(e)
Intra-Axon Extra-Axon Restricted Water
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FIGURE 12. Reconstruction of FODs for a small brain region. (a) The region of interest is in the red box. FODs are shown reconstructed with (b) a stick–
ball–dot model and convex optimization [35], (c) spherical deconvolution of diffusion distributions [36], and (d) a stick–ball model and Markov chain 
Monte Carlo [37]. Diffusion models significantly affect reconstruction results. In this example, the model-based and regularized method (b) [35] yields 
sharper and more stable results. (e) Estimated fraction of the intra-axon, extra-axon, and restricted water components. (Figure reprinted from [35] 
with permission.) 
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Processing FOD images is challenging because each voxel 
is a spherical function whose mathematical properties are 
much more complicated than a simple intensity scalar. Even 
fundamental tasks such as interpolation, smoothing, segmen-
tation, and registration must be redesigned. To use well-devel-
oped image processing frameworks, it is crucial to develop 
suitable manifold structures for FODs.

Log-Euclidean manifold for diffusion tensors
The simplest manifold structure for diffusion tensors is linear. 
Given two diffusion tensors D1  and D2 , represented as sym-
metric positive definite matrices, their distance is .D D1 2 2-

However, this structure has a noticeable defect: the linear 
average of two diffusion tensors may produce a tensor whose 

determinant is greater than both of them. The determinant, 
in the scenario of diffusion, has solid physical meaning: its 
square root is proportional to the width of the diffusion region. 
It is undesirable to have the region expanded. As a remedy, 
in 2006 Arsigny et al. [39] introduced the log-Euclidean 
manifold [39]: the distance between two diffusion tensors is 

( ) ( )log logD D1 2 2- . This manifold essentially maps a dif-
fusion tensor D  to its matrix logarithm log D^ h. Because D  is 
symmetric and positive definite, log D^ h is unique.

Hyperspherical manifold
The full description of FODs is a nonnegative spherical func-
tion :F S R2

0" 2  whose integral on the sphere equals one. In 
resemblance to the problem with diffusion tensors, a linear 

(a)
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Original Rotation-Induced Hyperspherical
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FIGURE 13. (a) Trajectories connecting two FODs on the rotation-induced and hyperspherical manifolds. FOD values in different directions are shown 
as radius length, and each direction is color coded by linearly combining the red, green, and blue colors according to the x, y, and z components of 
unit directional vectors. (b) Examples of smoothing (upper row) and interpolating (lower row) FODs. The right column shows the original image and 
highlighted regions. The middle and left columns show the results of the rotation-induced and hyperspherical manifolds, respectively. The red boxes 
show that the hyperspherical manifold mixes curving fibers instead of aligning them, introducing the “swelling” effect. (Figure reprinted from [40] with 
permission.)
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combination of spherical functions disperses probability densi-
ty on the sphere and hence reduces its angular focus. Cheng et 
al. [41] proposed a hyperspherical manifold of FODs. Because 

( )F u du 1u S28 =! , its square-rooted function f F 0$=  sat-
isfies ( )f u du 1u S

228 =! , or equivalently, the norm of f  is one. 
This implies that f  resides on a unit sphere in a hyperspace, a 
well-studied manifold. On this manifold, the distance between 
two FODs is the length of the great arc connecting them, and 
the interaction force is in the tangent plane of the hypersphere.

Rotation-induced spherical manifold
Although the hyperspherical manifold reduces the angular 
dispersion of FODs, it does not directly handle the main 
cause of dispersion: the FODs’ difference in orientation. As 
neuronal fibers extend in the brain, they do not take straight 
paths, but turn gradually to make curves. Li et al. [40] pro-
posed a rotation-induced manifold to directly handle this ori-

entational difference. The rotation-induced manifold treats 
tangent vectors on the hyperspherical surface differently, 
that is, whichever can be realized by rotation is associated 
with a parameter ,rotm  and whichever purely reflects shape 
differences is associated with a constant one. This unequal 
treatment does not change the topology, but defines a new 
Riemannian metric. By setting rotm  smaller than one, the 
FODs’ orientational difference is underweighted, and conse-
quently FODs with similar shapes but different orientations 
are squeezed closer. If rotm  equals zero, then the manifold 
reduces to a quotient space completely discarding differences 
caused by rotation. Figure 13 compares the rotation-induced 
and hyperspherical manifolds, showing that manifold struc-
tures can lead to very different processing effects. Reisert and 
Kiselev [42] have provided a framework for embedding fiber 
continuity into FOD reconstruction. It is interesting to utilize 
these FOD manifolds in their framework.

(a) (b)

(c) (d)

Disconnect

Remove

Join

Create

FIGURE 14. Two tractography methods. (a) The local method grows a fiber track step by step, according to local fiber information. (b) The global method 
improves a set of fiber tracks by disconnecting, joining, removing, and creating fibers with the aim of minimizing an energy function that matches fiber 
tracks and the FOD image through a generative model. (c) Fiber bundles simulated with a local tractography method seeded in a ball region. (d) An 
example of fiber tracks simulated by Daducci et al.’s [47] global tractography method. In (c) and (d), fiber tracks are color coded with the directional 
vector from their start point to their end point, with the red, green, and blue colors for the left–right, back–front, and up–down directions, respectively.
[(d) reprinted from [47] with permission.) 
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Simulation of fiber tracks
Based on local fiber orientation, tractography simulates fiber 
paths stretching from one brain region to another to statistically 
model geometric and connectional properties of the fiber net-
work. Millions of tracks can be simulated, grouped as bundles, 
and later analyzed with graph theory. It should be noted that 
simulated fiber tracks do not represent real neuronal fibers, but 
statistically reflect their spatial and orientational distributions. 
A single simulated fiber track does not have much realistic 
meaning, but statistics derived from a huge number of tracks 
are useful.

Tractography methods can be classified into two broad 
categories: local methods and global methods (Figure 14).  
Local methods “grow” a neuronal fiber from a seed step 
by step with the guidance of local fiber orientation. Usu-
ally, it becomes the simulation of an ordinary differen-
tial equation (ODE): / ( )dr dt G r= , where r  is the current 
location of a fiber point, ( )G r  is the fiber direction at this 
point, and /dr dt  is the growing velocity of the fiber. ( )G r
can be either deterministic or stochastic [37], [43]. If it is 
deterministic, it usually follows the FOD’s peak closest to 
the previous track direction. In this case, a fiber track is 
determined by its initial seed location and direction. If it 
is stochastic, the direction is randomly sampled according 
to the FOD. Probabilistic tractography explores more pos-
sibilities than deterministic ones. ODEs of higher orders or 
more sophisticated models can be used. To reduce errors, 
some methods [44] employ the fourth-order Runge–Kutta 
method instead of the first-order explicit Euler method. 
Local tractography algorithms usually run quite fast, but 
they share a common problem: local errors accumulate 
and propagate. To regularize the problem, most algorithms 

impose an upper bound on the curvature of their fiber 
tracks to avoid sharp turns.

Another approach treats tractography as an inverse prob-
lem: finding a set of fiber tracks that generate signals to match 
the dMR image [45]. The advantage of this method is obvious: 
to optimize an objective function, fiber tracks interact with each 
other, which may lead to more stable results and may also avoid 
repetitively sampling similar fibers. However, it is challenging 
to jointly solve such a problem with a huge number of fiber 
tracks. Therefore, it usually takes much longer computation 
time than local methods. In 2011, Reisert et al. [46] reduced the 
computation time to a practical range of several hours for about 
105 fiber tracks. They formulated an energy function

Tracks Tracks, Data ,E E E= +^ ^h h

where TracksE^ h prefers smooth and long tracks, and 
Tracks,  DataE^ h is the difference between track-generated 

signals and the real dMR image. The energy function is mini-
mized with simulated annealing instead of a deterministic 
method. Each time, an operation on track segments is ran-
domly proposed: creation, removal, move, join, and so on. The 
proposed operation is then accepted or rejected stochastically 
based on the energy change it introduces. Daducci et al. [47]
implemented this global tractography method into a software 
package called Connectome Mapper.

Applications to brain research
Connectivity information captured by dMR imaging has been 
investigated to understand the brain’s structure and function 
and its relationship with neurological disorders. A study on five 
healthy young men conducted by Hagmann et al. [48] revealed 

(a)

Four or Five Participants

Zero or One Participant

C
en

tr
al

ity

Three Participants
Two Participants

(b)

LH

RH

0.032

0.015

0.000

FIGURE 15. The connectivity centrality of brain regions. (a) Region centrality obtained from high-resolution connection matrices of five participants. The 
plot shows how consistently region centrality ranked in the top 20% among the 998 regions. (b) Lateral views of the right (RH) and left (LH) cerebral 
hemispheres showing connectivity centrality averaged across all five participants. (Figure reprinted from [48] with permission.)
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that brain regions are not connected equally, but some play 
more central roles than others (Figure 15). For each subject, 
they simulated nearly 3 million fiber tracks with a fixed step 
size of 1 mm and then derived a connectivity matrix between 
998 regions on the cortex surface, each of approximately 
1.5 cm2. On the basis of graph theory, they found that brain 
regions within the posterior medial parietal cerebral cortex and 
several temporal and frontal lobe areas form a highly mutually 
connected network and constitute hubs linking other regions. 
The functional activities of these regions are also highly cou-
pled when the brain is at rest.

From childhood to adulthood, the brain experiences pro-
found development to reach its peak of intelligence and mental 
capacity. Comparing the brains of 439 individuals aged 12–30 
years, Dennis et al. [49] found that not all connections are 
strengthened during the development, but some are “pruned.” 
They scanned the subjects with high angular resolution diffu-
sion imaging, reconstructed their fiber networks, and analyzed 
the networks with graph theory and linear regression regarding 
the subjects’ gender and age. It was found that fiber density 
relating to the frontal cortex decreases, but that relating to the 
temporal cortex increases, as shown in Figure 16.

Many mental disorders are related to abnormal function-
al integration caused by aberrant brain connectivity. Using 

diffusion tensor imaging and tractography, Zalesky et al. [50]
compared the anatomic connectivity network of 74 schizo-
phrenia patients with 32 controls matched in age and gender. 
They found  statistically significant differences in connectivity 
involving the medial frontal parieto-occipital lobe and the left 
temporal lobe between the patients and controls. 

Future scope
Advances in dMR imaging have provided a platform for inves-
tigating brain connectivity in vivo at unpreceded spatial and 
angular resolutions. Current acquisition and analyzing tech-
niques have not reached their full potential. Under active devel-
opment, they will be more efficient, more accurate, and more 
reliable in the established framework.

As these techniques are becoming more accessible, it is 
important to explore their clinical applications, such as brain 
surgical planning and prognosis of recovery from trauma, 
stroke, and so on. A connectivity network reconstructed from 
a patient’s dMR images may provide valuable information for 
surgeons to more precisely locate the spot of intervention or 
for doctors to better predict the mental impact of trauma or 
hemorrhage. A single imaging modality such as dMR might be 
insufficient to explain underlying physiological or pathologi-
cal changes. To obtain a more comprehensive understanding of 

Age 12

Age 12

Increases in Nodal Degree and Fiber Density

Decreases in Nodal Degree and Fiber Density

Age 30

Age 30

FIGURE 16. Dennis et al. [49] compared the brains of 439 individuals aged 12–30 years by high angular resolution diffusion imaging and found that 
not all connections are strengthened during development, but some are pruned. Only the connections with significant correlations with age are shown. 
The node size is proportional to the number of connections, and the thickness of the connection edges is proportional to relative fiber density. (Figure 
reprinted from [49] with permission.) 
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these changes, it is important to take advantage of multimodal 
imaging data such as functional MR imaging and positron 
emission tomography for biochemical and metabolic informa-
tion. In return, these clinical applications will inspire more 
engineering and methodological innovations.

Because dMR imaging provides in vivo and indirect views 
of a brain’s structural connectivity at a macroscopic level, it is 
important to verify and further investigate its relationship with 
microscopic images. Referring to high-resolution images at the 
neuron level may help identify signal signatures related to spe-
cific tissues. In 2013, the breakthrough CLARITY technology 
by Chung et al. [51] made it possible to optically create a three-
dimensional image of an intact brain structure at the resolu-
tion of individual neurons. CLARITY removes light-blocking 
fatty membranes from the brain and makes it transparent. 
With high-resolution microcopies, it can image a brain’s long-
range projections, local circuit wiring, cellular relationships, 
subcellular structures, protein complexes, nucleic acids, and 
neurotransmitters. Although dMR imaging cannot achieve 
such super-resolution, CLARITY does not replace it because 
CLARITY is a postmortem technique and unavailable for in 
vivo diagnosis. As an in vivo and macroscopic technology, 
dMR imaging can be further investigated with microscopic 
references to improve its value for clinical diagnosis.

A comprehensive and multiscale description of brain con-
nectivity, function, and development requires integrating infor-
mation from multiple imaging modalities, functional tasks, 
and genetic data. Such challenging integration will actively 
adopt cutting-edge technologies in data science. A connectiv-
ity map on the cortical surface forms a four-dimensional space, 
though sparse. Correlating with genomic data [52] introduces 
one more dimension with numerous genetic alleles. Overlaying 
functional tasks brings up even more varieties. Such explosive 
complexity has pushed researchers to seek solutions beyond 
classical regression models to recent achievements in machine 
learning, for instance, deep learning.

The need for standardization will arise as our knowledge 
about the brain connectome continues to expand. The fusion 
of complex information will naturally lead to a more detailed 
and specialized definition of brain regions and fiber bundles, 
as shown in Zhu et al.’s article “DICCCOL: Dense Individual-
ized and Common Connectivity-Based Cortical Landmarks” 
[53]. A systematic and precise naming catalog for anatomic 
structures and functional tasks will be needed for researchers 
around the world to report and exchange their results in shared 
databases. Extendable digital storage formats to accommodate 
complex connectivity information and processing protocols 
are also important for experiment replication and validation. A 
standardized neuroinformatics platform will boost collabora-
tion and lead to large-scale investigations as witnessed in the 
field of genomics.
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T
he study of whole-brain functional brain connectiv-
ity with functional magnetic resonance imaging (fMRI) 
has been based largely on the assumption that a given 
condition (e.g., at rest or during a task) can be evaluated 

by averaging over the entire experiment. In actuality, the data 
are much more dynamic, showing evidence of time-varying 
connectivity patterns, even within the same experimental 
condition. In this article, we review a family of blind-source 
separation (BSS) approaches that have proven useful for study-
ing time-varying patterns of connectivity across the whole 

brain. Initial work in this direction focused on time-varying 
coupling among data-driven nodes, but more recently, time-
varying nodes have also been considered. We also discuss 
extensions of these approaches, including transformations into 
the time-frequency domain. We provide a rich set of examples 
of various applications that yielded new information about 
healthy and diseased brains. Due in large part to developments 
in the field of signal processing, the fMRI community has seen 
major growth in the development of approaches that can cap-
ture whole-brain systemic connectivity information (connec-
tomics) while also allowing this system to evolve over time as 
it naturally does (i.e., chronnectomics).

Time-Varying Brain 
Connectivity in fMRI Data

Vince D. Calhoun and Tülay Adalı

Whole-brain data-driven approaches for capturing 
and characterizing dynamic states 
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Introduction
Big data [1], the human connectome [2], the Brain Research 
through Advancing Innovative Neurotechnologies (BRAIN) 
Initiative [3], and the chronnectome [4] are examples of the 
major ongoing movement in the United States, European 
Union, China, and Japan to understand the human brain 
and brain connectivity [cf., the multiagency Human Con-
nectome Project [2], [3] and BRAIN Initiative, the National 
Science Foundation’s (NSF’s) neural and cognitive systems 
program, the European Union’s Human Brain Project, 
Japan’s Brain/MINDS, and others]. Two critical themes 
across all of these projects are 1) the technology develop-
ment for studying the human brain and 2) harnessing and 
adapting ideas resulting from large-scale projects such as 
the Human Genome Project and the Big Data to Knowl-
edge Initiative. These themes continue to revolutionize our 
understanding of the complexity of the human brain and are 
driving the recent focus on scaling science to handle “big 
data” problems. 

The study of changes in brain networks (functional con-
nectomics [5], [6]) over time, termed the chronnectome, was 
recently highlighted as one of the “Best of 2014” by Director 
Dr. Tom Insel [7] of the National Institute of Mental Health 
in terms of a concept that brought engineers, physicists, and 
neurobiologists together to better understand the temporal 
dynamics of brain-imaging signals. Specifically, Dr. Insel 
noted the power of the “convergence” or merger of multiple 
disciplines [7], [8].

The chronnectome is a model of the brain in which nodal 
activity and connectivity patterns are changing in predict-
able and meaningful ways through time [4], [9]. Thus, the 
concept of the chronnectome makes the specific assump-
tion that the dynamics are nonstationary in interesting ways. 
One can focus on chronnectomic changes at various scales, 
including milliseconds [as measured by electroencephalo-
gram (EEG) or magnetoencephalogram (MEG)], seconds 
(as measured by fMRI), and minutes (as measured by chang-
es between experiments using average or static connectivity 
approaches [10]–[12]) and changes over months and years 
(at which point, incorporating additional information such 
as brain structure or epigenetic changes becomes very use-
ful for longitudinal studies) [Figure 1(a)]. Characterization 
of brain connectivity across the life span is a major priority 
in both the Human Connectome Project [5] and the BRAIN 
Initiative [3].

One of the earliest examples of time-varying connectiv-
ity is the concept of EEG microstates, or points in time dur-
ing which there is a common synchrony across multiple brain 
regions [13]–[17]. More recently, fMRI, which provides a more 
spatially specific measure of function across the entire brain 
(at the cost of decreased temporal resolution), has been used to 
study time-varying connectivity. In this article, we focus pri-
marily on the recent emergence of data-driven approaches that 
can capture whole-brain patterns of time-varying connectivity 
within one fMRI experiment (either at rest or during a task). 
Initial results suggest that such an approach provides more 

information than static connectivity approaches, thus motivat-
ing methods that acknowledge the dynamically changing brain 
within a single experiment. Such approaches will likely make 
the evaluation of connectivity changes over longer timescales 
even more informative. 

There has been great progress in the use of functional 
connectivity measures to study healthy and diseased brains, 
and whole-brain measures have proven extremely powerful. 
The fMRI community has now realized that the assessment 
of functional connectivity has been limited by an implicit 
assumption of spatial and temporal stationarities throughout 
the measurement period [18]. Dynamics are potentially even 
more prominent in the resting state, during which mental 
activity is unconstrained [19]. The development or adaptation 
of approaches to studying time-varying connectivity in the 
brain has emerged along multiple lines, including the detec-
tion of important transition points (e.g., change-point analy-
sis [20]), time-frequency approaches [21], and windowing 
approaches [22]–[24].

Data-driven approaches, in particular (joint) BSS, have 
proven useful for taking advantage of the available prior and 
statistical information to fully characterize both static and 
dynamic brain connectivity [25], [26]. The term chronnectome 
describes a focus on identifying time-varying but reoccur-
ring patterns of coupling among brain regions. The chron-
nectome—in contrast to another interesting concept called the 
dynome, which is focused on time-varying (oscillatory) activity 
whose basic characteristics (frequency, phase, amplitude, etc.) 
are generally assumed to be static [27]—makes the specific 
assumption that the dynamics are nonstationary in interesting 
ways. In the context of this article, dynamics refers to intrinsic 
nonstationarities rather than to dynamics in its mathematical 
sense. A number of approaches in this respect are revealing 
exciting new information about the brain, including informa-
tion about sleep states [28] and disease [29], and represent a 
much more natural way to analyze brain-imaging data, espe-
cially those that are largely unconstrained, such as resting-state 
fMRI data. 

A high-level summary of the key steps for capturing 
whole-brain, data-driven, time-varying connectivity is pre-
sented in Figure 1(b). Input to the analysis can consist of 
timecourses from regions or from networks (e.g., compo-
nent timecourses). Next, timecourse pairs can be analyzed 
using a fixed-window or adaptive windowing approach [23],
[30] or a time-frequency approach [21], [31]. The next step 
involves estimating the states, which can be done a num-
ber of ways, for example, by k-means clustering [30], prin-
cipal component analysis (PCA) [26], [32], or independent 
component analysis (ICA) [33], [34]. Finally, the summary 
measure of the states can be done for each state separately, 
for example, by dwell time or connectivity within each state 
matrix [29], [35] or across all states, such as in a metastate 
approach [33], [34].

In contrast to previous reviews [4], [18], the focus of 
this article is to review whole-brain, data-driven approaches 
from a signal processing perspective. In addition, we offer 
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new high-level summaries of the various steps in capturing 
time-varying connectivity [Figure 1(b)], new approaches 
(e.g., whole-brain time-frequency analyses), new strategies 
for modeling (e.g., subspace analysis and dynamic model-
based connectivity), and new application examples (e.g., 
results from the EEG/fMRI sleep study and the substance-
use study).

Feature generation
One key challenge for studying time-varying connectivity 
in the brain is generating the features that capture the time-
varying dynamics. Approaches include those that make use 
of a priori information, for example, picking a pair of brain 
regions (seeds) or using a whole-brain, predefined atlas of 
regions in fMRI data as well as data-driven approaches. Data-
driven approaches include sparsity-based parcellation [36]
and latent variables analysis methods, such as PCA, group 
ICA [37], spatially constrained ICA [38], independent vec-
tor analysis (IVA) [25], and tensor decompositions [39]. For 
example, in [40] and [41], the first event-related potentials in 
EEG data were detected and then summarized using PCA of 
time-dependent node correlation matrices. On the other hand, 
for fMRI data, decompositions that use ICA and IVA can be 

adapted to extract dynamic features in multiple ways as dem-
onstrated in, e.g., [30], [34], and [42].

ICA
ICA is based on the assumption that the observations 
are a linearly mixed set of independent sources/com-
ponents, an assumption that allows identification of the 
original sources subject to only scaling and permutation 
ambiguities and under rather mild conditions for identi-
fiability. If we consider the simple linear mixing model 

( ) ( ), , ( ), ( )x As x sV1 RN# # !o o o o o= , where v is the 
sample index such as voxel, pixel, or time and the mixing 
matrix A is full rank, we can obtain the independent com-
ponent estimates ( ) ( )u Wxo o=  by estimating a demixing 
matrix W through optimization of an appropriate cost-mea-
suring independence [25], [43].

ICA has proven very useful for fMRI data analysis and 
can be performed in two different ways [44], [45]: spatial 
ICA, which extracts independent spatial maps, and temporal 
ICA, which extracts independent timecourses by consider-
ing the transposed version of the data matrix. Spatial ICA is 
more widely used because the spatial independence assump-
tion is better suited for the systematically nonoverlapping 
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FIGURE 1. (a) The chronnectome concept of studying connectivity at multiple timescales [4]. (b) An overview of some of the key steps and options used 
in computing time-varying connectivity measures.
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nature of the spatial patterns [46]. For spatial ICA, the 
data matrix X is formed by flattening a given slice at time 
t as a row, such that X is time points by voxels (T V# )
and dimension T is typically reduced to N using PCA prior 
to ICA.

In the group ICA model [37], [47], which has been imple-
mented in the Group ICA of fMRI toolbox (GIFT)  (http://
mialab.mrn.org/software/gift), there are double-dimension 
reduction stages using PCA where the first step is to per-
form a subject-level PCA, and after vertical concatenation 
of dimension-reduced subject data, a second-level PCA is 
applied at the group level to estimate a common group sub-
space [48]. Individual subject maps are then reconstructed 
using the group- and subject-level PCA matrices, preserving 
most of the variability for individual subjects. Other imple-
mentations and uses of the group ICA model are also possible 
and are discussed in [37]. An example of the traditional use of 
group ICA is shown in Figure 2. The spatial maps are charac-
terized by a single timecourse and provide information about 
the degree to which each voxel is linearly related to that time-
course. As such, it informs us about within-network connec-
tivity. In the figure, components are divided into anatomical 
domz indicated within a domain by different colors. Rela-
tionships among the timecourses (matrix in Figure 2) capture 

the functional network connectivity (FNC) or among-net-
work connectivity. The matrix indicates the degree to which 
each component is correlated with the other components. 
Correlations are positive values (red), and anticorrelations 
are represented as negative values (blue). Results are shown 
for healthy controls (HCs) and patients with schizophrenia 
(SZ) [29]. Some approaches have also attempted to combine 
aspects of both spatial and temporal ICAs [44], [49].

IVA
In IVA, one explicitly assumes a separate source and mixing 
matrix for each data set and, for K data sets, writes x[k](o) =
A[k]s[k](o), x[k](o), s[k](o) ! RN k = 1, 2,…, K. The independent 
decomposition of all K data sets is then achieved jointly by 
fully taking advantage of the statistical second- and higher-
order correlations that exist among the data sets.

The key definition in the formulation of IVA is the 
source component vector (SCV) that is formed by using 
the corresponding elements of the source random vectors 
s[k](o), such that the nth  SCV is given by , ,s s s[ ] [ ] [ ]1 2

n n n
K T

f6 @ ,
where the subscript refers to the nth source in each of 
K data sets. For example, for data from K subjects, this 
would be the nth spatial map for each subject [25], [50].
The IVA decomposition is achieved by minimizing the 
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FIGURE 2. Data-driven maps from group ICA provide components that capture information about within-network (within-component) connectivity that is 
characterized by timecourses that can be used to assess FNC or among-network connectivity, which can be assessed in the simplest manner by comput-
ing the cross-correlation among component timecourses. Results are shown for HCs and patients with SZ (reprinted with permission from [29]). The 
numbers in parentheses indicate the number of components that were included in each group. The X, Y, and Z coordinates of the slice in millimeters in 
the Montreal Neurological Institute coordinate system are shown.
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mutual information among the SCVs (as opposed to 
sources in ICA), which is equivalent to finding sources 
that are independent within each data set while maximiz-
ing the mutual information within each one of N SCVs 
[25]. The use of this statistical dependence allows the 
mitigation of permutation ambiguity for sources (modes) 
that are dependent across the data sets so that the source 
estimates across subjects are aligned.

Capturing time-varying connectivity
The capture of time-varying coupling between variables is 
a topic that has been heavily studied in other fields and in 
communications for signal processing in particular. How-
ever, the specific application to whole-brain functional 
connectivity is relatively new [22], and its application to 
brain-imaging data poses particular challenges that are cur-
rently being studied. One important challenge is how to best 
identify relevant features from the high-dimensional brain-
imaging data. Both group ICA and IVA can be effectively 
used to extract features of interest from the fMRI data that 
in a second step can be used to characterize the dynamic 
properties. In this section, we provide a brief introduction of 
the use of both tools in this context.

Time-varying connectivity captured with group ICA
One approach is to use group ICA of multiple subjects and, 
after selection of components of interest, capture time-vary-
ing changes in the coupling (e.g., covariance) among com-
ponent timecourses using FNC with a tapered window [30].
The FNC information shown in Figure 2 was computed by 

assuming that the connectivity was static throughout the 
experiment. Dynamic approaches capture time-varying con-
nectivity within fMRI data [30], [51] or changes in the spatial 
maps (spatial FNC). 

The simplest approach is to use a windowing method [24],
[30], [52]. An example of this is shown in Figure 3, in which 
group ICA was run on multiple subjects, followed by selec-
tion of components of interest and then cross-correlation 
of the ICA timecourses, called dynamic FNC (dFNC). Fig-
ure 3(a) shows a cross-correlation matrix for the entire ICA 
timecourse for a single subject. A tapered Gaussian window 
was used to compute time-varying correlation matrices [top 
of Figure 3(b), with individual correlations shown at the bot-
tom for the black boxes marked in the matrix in Figure 3(a)]. 
There is considerable variability in the connectivity, which 
does not appear to be noise due to the modularity of the cor-
relation matrices and the fact that the timecourse tends to be 
low frequency.

Dynamics of spatial patterns captured with IVA
We can also process overlapping windows jointly using IVA 
to capture time-varying spatial patterns, as demonstrated in 
[42]. Because IVA jointly optimizes independence, the use of 
shorter time windows becomes possible, allowing for suffi-
cient statistical power for the estimation. One example for the 
use of IVA to capture changes in the spatial coupling (changes 
in either the within-component maps or the coupling among 
spatial networks) is in conjunction with a group-level PCA 
[48]. The data are partitioned into K time windows of equal 
size T, and then the window from each of the M subjects is 

FIGURE 3. FNC dynamics via windowing, single-example subject: (a) average FNC (cross-correlation of ICA timecourses) for a single subject and (b) FNC 
time series between select components and snapshots of whole-brain FC30. The numbers in parentheses correspond to the component numbers with 
time courses that were cross-correlated to compute the functional network connectivity matrices. 
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analyzed groupwise, as shown in Figure 4. The dimension-
ality of each data set X' is reduced from MT to N, resulting 
in dimension-reduced data sets. This approach enables us to 
capture changes in the spatial patterns that reflect connectiv-
ity over time. In the section “Changes in Time-Varying Spa-
tial Patterns in Patients with SZ,” we show a summary of the 
results from an application of this approach to evaluate group 
differences in spatial dynamics. 

Characterization of time-varying connectivity
Once the relevant features are extracted from the data, 
they must be analyzed to evaluate their dynamic proper-
ties. Three important approaches to accomplish this are 
Markov modeling, metastate analysis based on windowing 
or adaptive approaches (e.g., in which pairwise correlations 
are computed using small portions of the data), and time-
frequency analysis (in which a time-frequency approach is 
used to transform the data and study patterns of amplitude, 
phase, and frequency over time [21], [31]).

Markov modeling/state transitions
Markov chain (MC) modeling provides a powerful way to char-
acterize (and distinguish) time-varying connectivity [30], [42]. A 
data-driven approach can be used to learn both the states and tran-
sitions from the data (in both space and time). Figure 5(a) shows 
the state assignments as a function of time for three representa-
tive subjects for the dFNC approach. Transition behavior can be 
characterized by considering an MC in which the probability to 
go from the current state to the next state is conditionally indepen-
dent from all states that occurred (in time) before the current state. 

In Figure 5(b), we show the average transition matrix (TM) 
for our example. Red squares along the diagonal signify a 
very high probability of staying in the same state. For the off-
diagonal elements, hotter colors in column 1 indicate a higher 
probability of entering state 1 from the other states, and cooler 
colors in row 3 indicate a lower probability of exiting state 3. 
Because the MC is irreducible (any state can be reached from 
any other state in a finite number of steps), its stationary distri-
bution (r) can be obtained as the principal eigenvector of the 
estimated TM [53].

The vector r, displayed in Figure 5(c), represents the prob-
ability distribution over the states of the MC when the chain is 
in its stationary regime, that is, in the expected behavior of the 
system in the long run. In our example, the stationary prob-
ability for state 3 is far greater than the probabilities for other 
states, meaning that, in the long run, the system is most likely 
to be found in state 3. MCs enable us to capture the propagation 
of probability distribution vectors over the states (i.e., mixed-
state vectors) through a network.

Cross-state summary measures (e.g., metastates)
A core challenge for dynamic network connectivity analy-
sis is to summarize the data in ways that simultaneously 
reduce the data’s dimensionality and expose features that 
are strongly predictive of important population character-
istics. The native dimension of network correlation space 
can easily exceed 1,000. However, recent approaches have 
been developed to summarize the dynamic information in a 
higher-level summary [75]. In this case, the goal is to calcu-
late a tractable characterization of time-varying connectivity 

Subject 1

Subject M

.

.

.

Window 1 Window 2 Window L

Window 1 Window 2 Window L

Reshape

Reshape

T Time
Points

L × T Time Points

L × T Time Points

Voxels
Voxels

x[1, 1]

y[1, 1]

x[1, L] y[1, L]

x[M, 1]

y[M, 1]

x[M, L]

y[M, L]

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

N ICs

IVA

SCV_N

SCV_1

M

M

FIGURE 4. The IVA approach to characterize spatially dynamic and static components [4], [18], [42]. Here, spatial maps of a component vector are related 
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in terms of the additive contributions of a set of basis corre-
lation patterns (BCPs) obtained according to some specified 
optimization criterion (using, for example, temporal ICA, 
spatial ICA, PCA, or k-means clustering) [34], [54]. A BCP 
in the context of a PCA-based approach would be called 
an eigenconnectivity.

This is summarized in the “Estimation of Dynamic States” 
column of Figure 1(b). The time-indexed N-element vectors 
of BCP weights, discretized according to signed quartile, are 
the metastates. In a recent work [34] (Figure 6), the results 
showed a summary of a three-level five-state quantization in 
400 healthy subjects that indicates the following.
1) Only 22 of these metastates are occupied more than 1% of 

the time. 
2) These states include mostly single- or double-state occu-

pancy.
3) Females show more single-state occupancy than males, 

who show more double-state occupancy [34].
Using a large, balanced, multisite data set, we also inves-

tigated the effect of SZ diagnosis on four interrelated mea-
sures of metastate dynamism, separately evaluated with 
respect to BCPs obtained from four common algorithms 
[55]. These analyses yielded consistent and significant evi-
dence for reduced connectivity dynamism in patients with 

SZ and provided strong evidence in support of such sum-
mary measures. 

There are a number of possible ways to compute cross-state 
summary measures, a topic of ongoing work. One example of 
such a metric is the concept of a k-level hub (e.g., states that are 
returned to k or more times). Related concepts include absorb-
ing hubs (subjects stay for extended periods of time) and tran-
sient hubs (subjects come in and out multiple times for short 
periods), both of which appear highly different in SZ [55], [75].

Time-frequency analysis
Chang and Glover [21] first introduced the use of time-frequen-
cy methods to study time-varying connectivity (coherence) in a 
few regions of interest. More recently, a whole-brain time-fre-
quency approach was proposed that enables brain states to be 
estimated [56]. The proposed approach can be considered an 
extension and generalization of both the time-domain [30] and 
coherence [21] approaches (see [56] for more details). Using 
this approach, we can more fully characterize a state via mul-
tiple frequency bands by its connectivity pattern (covariance), 
frequency contribution, and phase (e.g., anticorrelated pairs 
would have a 180° phase shift). 

Figure 7 shows an example of a state that was defined via 
k-means clustering after the use of a complex Morlet filter 
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to separate five different frequency bands with magnitude 
and phase. This particular state has most of its power within 
0.07–0.13 Hz, has some strong 0° and 180° phase patterns, 
and captures some very interesting patterns. The results from 
a large resting-state fMRI data set (N = 400) identified two 
states, with similar correlation patterns but distinct frequency 
profiles, one of which was highly predictive of males versus 
females [31]. This provides additional evidence that ignoring 
the dynamic information obscures important knowledge.

Validation
Quite a few studies have been published that provide impor-
tant information validating the presence of chronnectomic 
information in fMRI data. For example, one study of a large 
subject (N = 400) data set performed a split-half replica-
tion and also varied a number of parameters, including the 
number of estimated states and the window size [30], [57].
Other studies have shown that dynamic connectivity tracks 
closely with sleep state [28] and psychedelic experience [58],
is reflected in both humans and macaques [51], and is asso-
ciated with daydreaming [59]. Cross-validated classification 
also appears to be more powerful when applied to dynamic 
connectivity measures [4], [60]. Comparison of dynamic 
connectivity measures in the presence of tasks that activate 
known brain regions also provides powerful evidence to sup-
port the presence of connectivity states [18], [61].

Concurrent EEG/fMRI experiments
Concurrent EEG provides a useful way to validate these 
dynamic changes by providing convergent evidence for them. 
Although EEG alone cannot provide a ground-truth measure 
because EEG and fMRI are generated by and sensitive to very 
different sources, we do expect that fMRI changes in con-
nectivity over time that reflect neuronal changes will also be 
detectable with EEG. 

An illustrative example examining differences in dynam-
ics associated with the eyes-open (EO) versus eyes-closed 
(EC) state is presented in Figure 8. Concurrent EEG/fMRI 
data were collected using a Brain Products EEG system 
(Gilching, Germany) that had been previously used to collect 
data comparing a variety of frequencies in EEG with fMRI 
data in the resting state for EO and EC [62], [63]. The results 
from a preliminary analysis of these data using a group ICA 
approach to evaluate temporal dynamics are shown in Figure 8  
[64]. Figure 8(a)–(f) shows two dynamic states estimated 
from the fMRI data. Both of these states showed a signifi-
cant difference between EO versus EC, with state 1 occurring 
dominantly for EO and state 5 showing significantly more 
occurrence during the EC stage and demonstrating more 
EEG alpha power. The anticorrelation with brain regions 
associated with inner reflection (regions in the widely stud-
ied default-mode network [65]) was also stronger in the EO 
data. As the states were associated with more EEG drowsi-
ness measures, these anticorrelations diminished and then 
subsided [64].

This is only a relatively simple approach to relating EEG 
and fMRI data. More advanced methods that take advantage 
of the joint information during the estimation process would 
likely be even more fruitful in demonstrating the benefits of 
dynamic connectivity [63], [66]–[69].

Incorporating dynamics improves contrast to noise
The data shown in Figure 9 were evaluated from a nor-
mative resting-state fMRI data set (N = 200 HCs) using a 
simple model that incorporates an explicit static subspace 
(while modeling the dynamic information in a nuisance sub-
space). In this case, the model that incorporates the dynamic 
information [Figure 9(a)] shows a higher contrast-to-noise 
ratio than when the dynamic information is completely 
ignored [Figure 9(b)]. This result also provides strong support 

FIGURE 7. The multiband state with 25% occurrence rate showing the most power in the 0.07 and 0.13 frequency bands. Phase histogram and color 
indicate the phase of the dynamics.
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for the use of models that capture both the static and dynamic 
connectivity information.

Choice of estimation strategy and parameters
One common critique of windowed correlation approaches 
is that they can introduce spurious correlations [24], [70]. A 
number of papers have quite carefully evaluated various win-
dow parameters and performance in simulations in real data 
[22], [24], [30]. In particular, spurious changes in connectiv-
ity appear if the sliding window length is shorter than the 
largest period present in the signals [24], suggesting window 
lengths of at least 30 seconds for fMRI. The combination of 
multimodal data (e.g., EEG and fMRI) might help mitigate 
the issue and confirm that the changes are real [71]. Instead 
of a fixed window, adaptive windowing approaches can also 
be used [23]. More importantly, fixed-window approaches 
perform quite similarly in their mean to adaptive windowing 
approaches [23]. In addition, the combination of multivariate 
approaches with windowing appears to be more robust in pre-
venting spurious correlations than are univariate approaches 
[4]. Another choice involved is the number of states. This 

has not yet been evaluated comprehensively, although in mul-
tiple papers, an evaluation of results with various numbers of 
states has been presented to ensure that results are not heav-
ily dependent on the final choice (see, for example, [30]).

Applications
There have already been numerous uses of time-varying con-
nectivity in fMRI data. In this section, we review three inter-
esting applications: 
1) a study of changes in spatial connectivity patterns in SZ
2) an evaluation of the relationship between the sleep stage 

and connectivity 
3) an evaluation of the differences in connectivity states in 

individuals who are either heavy smokers or heavy drinkers.

Changes in time-varying  
spatial patterns in patients with SZ
It is challenging to consider changes over time in both spatial 
and temporal aspects of connectivity, but spatial patterns 
are also an important aspect of the dynamic information. 
In an analysis of patients with SZ versus HCs, we used the 
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windowed IVA approach shown in Figure 4 with seven 
windows, each of which overlapped by 50% to cover a 
200-time point resting-state fMRI data set. Thirty compo-
nents were estimated, and 12 of them were determined to 
be related to brain function and not artifact. Computation of 
MC transition probabilities between multiple states  demon-
strated that the controls showed significantly less probability 
to transition between states. This provides a way to summa-
rize changes in the spatial patterns over time. We can also 
evaluate changes in the dependencies between pairs of spa-
tial networks over time. To estimate spatial dependencies, 

we computed a mutual information matrix for each subject 
and each window. The spatiotemporal dependency dynam-
ics are very interesting. Some showed significant differences 
between patients with SZ and HCs. For example, patients 
with SZ showed more coupling between the network dynam-
ics of the medial prefrontal cortex (brain regions thought to 
mediate cognition) and the temporal lobe (regions that pro-
cess sound and language and are known to be disrupted in 
SZ) than did controls (Figure 10). This is a simple summary 
measure of only seven windows, but it indicates that spatial 
dynamics are a sensitive measure of disease state.
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FIGURE 10. SZ patients exhibit significant changes in the spatial dependency between default-mode and temporal-lobe networks. (Figure reprinted from 
[76] with permission.)
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Time-varying connectivity in fMRI
maps to EEG-defined sleep stages
For evidence of the utility of the dynamic patterns, we evalu-
ated resting-state fMRI data collected from 55 subjects for 
50 minutes each (1,500 volumes, TR = 2.08 seconds) with 
a Siemens 3T Trio scanner (Malvern, Pennsylvania) while 
the subjects transitioned from wakefulness to, at most, sleep 
stage N3 (for more details, see [72]). Simultaneous EEG was 
acquired, facilitating sleep staging according to the Ameri-
can Academy of Sleep Medicine (AASM) criteria, resulting 
in one hypnogram per subject (a vector assignment of consec-
utive 30-second EEG epochs to one of awake, N1, N2, and N3 
sleep). Following our recent work [30], we estimated dFNC 
between components following a group ICA. We then com-
puted the counts of these dFNC windows for each hypnogram 
state. The results show that states 1 and 5 mapped strongly to 
the awake and deeper-sleep stages, respectively (Figure 11)
[73]. More work is needed, but the results strongly support 
the utility of capturing dynamic connectivity.

Time-varying connectivity is significantly  
changed in substance users
A greater understanding of individual differences in the 
neurobiology of substance use is integral to developing more 
effective interventions. A large body of evidence shows 
aberrant brain structure and function in substance users. 
Whereas some specific regions are implicated in crav-
ings and loss of controls (e.g., mesocorticolimbic regions), 
for the most part, these studies are heterogeneous and do 
not provide the ability to discriminate between substance 
users and controls at the level of the individual. In part, we 
believe this is because the connectivity methods focused 
on static measures and did not fully capture the variabil-
ity of the patterns within the patient groups. In particular, 
it is clear that 1) large heterogeneity in the substance-use 
disorder brain function makes analysis challenging; and 2) 
although certain brain pathways have been hypothesized 
as most affected, all of these disorders encompass multiple 

interacting brain regions. The ability to evaluate the depen-
dencies between multiple functional brain networks is criti-
cal to understanding the disorders.

The dFNC results were computed for smokers and drinkers 
(N = 50) and identified significant changes in correlation 
among multiple brain networks. Figure 12 shows dFNC matri-
ces for two dynamic states demonstrating differences among 
smokers and drinkers. State 1 lacks most of the anticorrela-
tion between default-mode and other networks (pink boxes), 
as well as the connectivity within sensorimotor regions. Some 
interesting differences are also apparent when evaluating the 
dwell time each group spent in the dynamic states. For exam-
ple, smokers and drinkers both spent significantly more of 
their time within state 2. The percentage of time each group 
spent in these two states is illustrated in Figure 13 and was 
significantly different among controls, smokers, and drink-
ers. Neither of these interesting results is observable from 
the static results. The importance of such a result is that the 
ability of methods that focus on dynamics to separate out 
information about the neurobiology of substance use may 
teach us more about how the brain is different in nicotine or 
alcohol use. In addition, this information may provide a more 
accurate biomarker that can be used to predict, for example, 
treatment outcomes.

Conclusions
In summary, time-varying connectivity is a powerful tool for 
improving our understanding of the brain. There are still plenty 
of avenues of ongoing investigation that require creative think-
ing and the development of advanced signal processing meth-
ods to improve the estimation performance and the extraction 
and characterization of meaningful information. For example, 
some specific directions of interest include the development 
of approaches that can capture both static and dynamic con-
nectivity patterns. Moreover, approaches that can capture spa-
tiotemporal patterns of connectivity would be very desirable 
because it is clear that both static and dynamic connectivity 
patterns are changing in systematic and interesting ways. In 

1,000

500

0

1 2
dFNC States from Rest-State fMRI Data

3 4 5 1 2
dFNC States from Rest-State fMRI Data

3 4 5

C
ou

nt
s

Awake Stage N3

Sleep Stage Defined Using Concurrent EEG

24775 (30%)
24336 (30%)

Awake 24775 (30%) Stage N3
24336 (30%)
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addition, more studies that map task information to the states 
will improve our understanding of the function of these con-
nectivity states [74].

Finally, there is an important need for continued work in 
characterizing single and multiple states or other summary 
measures that provide intuitive ways of conveying brain con-
nectivity in a way that respects the dynamic nature of the 
brain. Such approaches should inform us about the healthy 
brain and direct us to important aspects of disease, especially 
for complex mental illnesses, such as SZ and autism spec-
trum disorder.
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D
uring the last few decades, positron emission tomography (PET)-based molecular imaging has advanced 
elegantly and steadily gained importance in the clinical and research arenas. However, the lack of struc-
tural information provided by this imaging modality motivated its correlation with structural imaging 
techniques such as X-ray computed tomography (CT) or magnetic resonance imaging (MRI), which are 

well established in the clinical setting. The additional capability of simultaneous acquisition of PET and MRI 
data bridges the gap between molecular and morphologic diagnoses. Since diagnostic imaging methods evolve 
from the anatomical to the molecular level, the mission of multimodal and multiparametric imaging increas-
ingly becomes more essential. Since 2010, whole-body hybrid PET/MRI has been investigated in the clini-
cal setting for clinical diagnosis and staging, treatment response monitoring, and radiation therapy treatment 
planning of a wide range of malignancies. However, quantitative PET/MRI is still challenged by the lack of 
accurate and robust attenuation and motion compensation strategies to enable the production of artifact-free 
and quantitative PET images. This article briefly summarizes the historical development of PET/MRI and gives 
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an overview of the state of the art and recent advances in the 
design and construction of clinical systems. Progress in quan-
titative imaging, including MRI-guided image reconstruction 
and correction, and potential clinical applications of this novel 
technology are also discussed.

Introduction
PET is considered to be one of the key molecular imaging 
modalities enabling noninvasive characterization and quan-
titative evaluation of a multiplicity of molecular and physi-
ologic biomarkers in vivo at the cellular level in healthy and 
disease states, including neurology, psychiatry, cardiology, and 
oncology. However, PET produces blurred and noisy images 
that inherently lack the anatomical information required for 
localization of metabolic abnormalities. This limitation has 
motivated the combination of PET with structural imag-
ing modalities, such as X-ray CT and MRI. Currently, PET 
is capitalizing and complementing other anatomical imaging 
modalities, such as CT and MRI, to address basic research and 
clinical questions. However, multimodality imaging requires 
robust registration of images generated by various modalities. 
Initially, multimodality imaging was accomplished through 
the use of software-based image registration (rigid body or 
deformable) and fusion to correlate anatomical and molecu-
lar information [1]. However, the challenges and inherent 
limitations of software-based image registration approaches 
motivated the emergence of hardware-based approaches for 
multimodality imaging. The advent of combined PET/CT and 
PET/MRI systems, their commercial introduction, and the fast 
and wide acceptance of the former in the clinic have had a sig-
nificant impact on patient management and clinical research. 
However, the latter is still an “embryonic” technology, having 
the potential to become a powerful tool and likely to play a 
pivotal role in clinical diagnosis and research [2], [3].

This article reviews the state-of-the-art developments and 
the latest advances in hybrid PET/MRI instrumentation along 
with quantitative procedures developed to address the chal-
lenges of this modality. An outlook outlining potential promis-
ing developments and current and future clinical applications 
of this technology is also discussed.

History of hybrid PET/MRI
The history of PET/MRI can be traced back to 1986, when 
the first attempts to perform PET imaging within strong static 
magnetic fields were initiated, motivated by the need to reduce 
positron range prior to annihilation through magnetic confine-
ment of emitted positrons [4], [5]. Indeed, the static magnetic 
field of the MRI subsystem influences the trajectory of posi-
trons, causing them to spiral between successive interactions 
with matter, thus reducing the in-plane spatial resolution of the 
PET subsystem. Monte Carlo simulation studies demonstrated 
that the use of a magnetic field collinear with a PET scanner’s 
axis improves the transaxial spatial resolution without imping-
ing on the axial spatial resolution [5]. For instance, Wirrwar 
et al. [6] reported foreseen improvements in spatial resolution 
for high-energy positron-emitting tracers ranging between 

18.5% (2.73 mm instead of 3.35 mm) for 68Ga and 26.8% 
(2.68 mm instead of 3.66 mm) for 82Rb at a field strength of 
7 T. Another effect, which has been characterized only very 
recently, is the degradation of the axial spatial resolution owing 
to the elongation of the positron range distribution along the 
magnetic field B0 or the so-called shine-through artifact [7]. 
It was reported that this effect might cause severe artifacts in 
PET images for malignant lesions located close to air cavities, 
particularly when using high-energy positron-emitting radio-
nuclides (see the section “Pitfalls and Artifacts”).

Contrary to the history of PET/CT, which began with the 
design of hybrid systems suitable for clinical use, PET/MRI 
began with systems dedicated to preclinical imaging. Sur-
prisingly, the history of hybrid PET/MRI instrumentation 
per se can be traced back to 1995, prior to the introduction of 
PET/CT [8]. Early designs of MR-compatible PET detector 
modules focused on modifying detector blocks of an exist-
ing small-animal PET scanner to avoid mutual interference 
by placing photomultiplier tubes (PMTs) at a realistic dis-
tance from the strong magnetic field of a clinical MRI unit 
[9]. For the sake of avoiding or reducing mutual interference 
between imaging modalities, the coupling of detector blocks, 
position-sensitive PMTs, and readout electronics located out-
side of the magnetic field was achieved through long (4–5 m) 
optical fibers. The main disadvantage was, however, the non-
negligible loss of scintillation light through the long fibers, 
resulting in a weak signal, which negatively impacts energy 
and timing resolution, impairs deteriorating crystal identifica-
tion, and decreases PET signal performance, reducing overall 
PET performance [10].

Although this design concept bears inherent limitations, 
analogous approaches were adopted in academic settings [11]. 
Other associated approaches based on conventional PMT-
based PET detectors included split-magnet [12] and field-
cycled [13] MRI, which rely on more complex magnet designs. 
In the split-magnet design, an 8-cm gap in the axial direction 
of a 1-T magnet enables accommodation of the microPET 
Focus 120 small-animal PET scanner (Siemens Healthcare, 
Erlangen, Germany) and 1.2-m-long optical fiber bundles 
[12], making it possible to place the PMTs at very low field 
strength (~30 mT). The main advantage of this design is the 
need for only minor modifications of conventional PET detec-
tors and associated readout technologies, although the magnet 
and gradient coil design is more complex and costly compared 
with technologies used on current-generation MRI systems. In 
the field-cycled design, PMTs are assembled into the magnet, 
although PET data acquisition is barely permitted within short 
time intervals (~2.5 seconds) when MRI polarizing and read-
out fields are switched off [13]. The challenges associated with 
this design still need to be addressed before a viable hardware 
realization can be achieved. Moreover, the need for electro-
magnets instead of conventional superconducting magnets 
requires noteworthy compromises.

The introduction of MR-compatible readout technolo-
gies, such as avalanche photodiodes (APDs) and silicon 
photomultipliers (SiPMs), was essential to achieve this goal. 
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Avalanche photodiode-based readout technology was success-
fully employed on a commercial preclinical scanner [14] and 
various prototypes for small-animal [15] and breast [16] PET/
MRI. Small pixelated APDs or SiPMs operated in “Geiger 
mode” and more recent readout technologies, such as analog 
[17] and digital [18] SiPMs, have been investigated as possible 
candidates for PET/MRI, and their current performance is 
sufficient for the design of combined PET/MRI systems [19], 
given that the bulk of MRI electronics could be significantly 
reduced [20]. Convincing experimental results and in vivo 
mouse images obtained on APD-based PET/MRI design dem-
onstrate the capability for simultaneous PET/MRI [15]. More 
importantly, experimental measurements confirmed that each 
subsystem performs equally well when the other is on or off, 
reinforcing that each modality is barely visible to the other. 
These technological advances motivated additional explora-
tion of the clinical potential of PET/MRI [21].

Design considerations of hybrid PET/MRI systems
Contrary to sequential PET/CT, where the design concept is 
straightforward and consists of putting together two separate 
modalities, the design of fully integrated PET/MRI systems 
is less obvious. Indeed, such development requires not only 
modifications of the PET subsystem to deal with MR comput-
ability but also significant redesign of the MRI subsystem [3], 
[10], [22]. Basically, two major design concepts for PET/MRI 
have emerged: sequential and concurrent [23] (Figure 1). In the 
former design concept, a serial arrangement of two separate 
scanners enables sequential data acquisition of both modali-
ties using a single patient’s bed to transfer the patient from one 
modality to the other. Conversely, the latter consists of either 
an MR-compatible PET insert that can be placed with the MRI 
gantry or a compact integrated system enabling truly simulta-
neous data acquisition.

The sequential design is the more straightforward and by 
far the more economical concept, requiring only minor modi-
fications of both subsystems (e.g., shielding the PET detectors) 
and arranging for a common patient bed. Sequential PET/

MRI systems were designed in anticipation of the availabil-
ity of mature and economically viable simultaneous whole-
body PET/MRI systems, which appeared later and became 
commercially available. Two design concepts have material-
ized depending on the configuration adopted for patient bed 
shuttling from one modality to the other. Systems belonging 
to the first category include the Ingenuity TF PET/MRI sys-
tem (Philips Healthcare, Best, The Netherlands), in which a 
common sliding/rotating bed transfers the patient from MRI to 
PET and vice versa [24]. The PET/CT/MR trimodality imag-
ing system (GE Healthcare, Little Chalfont, United Kingdom) 
consists of commercial PET/CT and MRI systems placed in 
separate but nearby rooms, and a specially designed patient 
transfer tabletop, docked on both imaging systems, is used 
to shuttle the patient from the PET/CT to MRI examination 
rooms [25]. A similar design concept dedicated to brain imag-
ing was pursued by Cho et al. [26] by docking a high-resolu-
tion research tomograph and 7-T MRI.

The concurrent design of hybrid PET/MRI is possibly 
more attractive but is technically more challenging because 
it involves addressing many difficulties to deal with space 
restrictions and to avoid interference between the two 
modalities. To this end, MR-compatible photodetector tech-
nologies that are insensitive to magnetic fields and readout 
electronics producing the least amount of heat radiation have 
to be used [10]. In addition, the PET detector modules should 
not affect the operation of the MRI subsystem through elec-
tronic interference with the radio frequency (RF) and gradi-
ent coils. In essence, the operation of both modalities should 
not be affected by their integration, and both subsystems 
should retain their full performance, similar to what can be 
achieved with two separate PET and MRI scanners.

As mentioned in the previous section, recent develop-
ments in solid-state detectors have led to the replacement 
of conventional PMTs by MR-compatible position-sensitive 
APDs and SiPMs for the practical implementation of fully 
simultaneous PET/MRI systems. The PET insert concept, 
consisting of placing the detector ring inside an MRI scanner, 

MRIPET MRI

PET

MRI

PET

Common Bed

RF Coil

RF Coil

Single Bed
(a) (b) (c)

FIGURE 1. Schematic cross-sectional views of potential designs for combined PET/MRI systems: (a) a tandem design with two imagers mounted back 
to back (similar to that in PET/CT instrumentation) to allow sequential rather than simultaneous acquisition, (b) an insert design with the PET imager in-
serted between the RF coil and gradient set of the MR imager, and (c) a fully integrated design with two imagers in the same gantry. The RF coil, gradient 
set, PET imager, and patient bed are shown for all configurations. (Figure adapted with permission from [23].)
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was the first landmark, and a number of studies have 
described different design trends, focusing particularly on 
the integration of small-bore, small-animal PET scanners 
inside existing clinical MRI scanners. The small diameters 
of these devices allows them to fit into the MRI system with-
out crowding the MRI gradients.

As mentioned previously, fully integrated compact sys-
tems combining PET and MRI components in a single appa-
ratus, such as Siemens Healthcare’s Biograph mMR and GE 
Healthcare’s SIGNA, constitute the most promising design 
concept for PET/MRI. The exploitation of the most advanced 
technologies available for both systems is advised to achieve 
the best performance. For instance, using a PET scanner 
equipped with time-of-flight (TOF) capability is certainly a 
bonus, as discussed in the following section. In this regard, 
SiPMs have many advantages compared with other solid-
state photodetectors, such as APDs, because they have better 
performance characteristics, including high gain, signal-to-
noise ratio (SNR), and timing resolution, enabling the imple-
mentation of TOF PET on potential PET/MRI systems.

Instrumentation for clinical PET/MRI
The successful design of small-animal PET/MRI systems 
spurred the development of clinical systems, with the first 

prototype (called BrainPET) for brain imaging manufactured 
by Siemens Healthcare in collaboration with the University of 
Tübingen in Germany [27]. The system performance was char-
acterized and its suitability for various clinical applications 
assessed at a number of academic institutions. Special atten-
tion was paid to the possibilities offered by high-resolution 
structural MRI, including high soft-tissue contrast sensitivity 
and advanced functional MRI techniques [28]. A sequential 
PET/MRI system was also developed to meet the needs of 
molecular and genetic brain imaging by docking separate PET 
and 7-T MRI scanners together with a shared common bed for 
interscanner patient translation [26].

Subsequent to early groundbreaking developments, differ-
ent design concepts of PET/MRI systems have materialized 
during the last decade in both academic and corporate settings. 
Figure 2 shows photographs of current commercial clinical 
whole-body PET/MRI systems with potential design concepts. 
Table 1 summarizes the main characteristics of clinical PET/
MRI systems developed so far.

The Ingenuity TF PET/MRI system, with TOF Gemini TF 
PET and Achieva 3T X-series MRI systems, is one such exam-
ple, allowing for sequential acquisition of aligned PET and 
MR images. A number of such systems were deployed world-
wide, and the PET subsystem was fully characterized using 

PET

MRI

Patient Transfer TabletopPET/CT

(a) (b) (c)

(d) (e) (f)

MRI

PET/MRI

FIGURE 2. (a)–(c) The Philips Healthcare whole-body Ingenuity TF PET/MRI system [in which a turntable patient-handling system facilitates patient 
motion between the PET subsystem shown in (a) and the Achieva 3T X-series MRI system shown in (c) for sequential acquisition], the Siemens Health-
care Biograph mMR system, and the GE Healthcare SIGNA PET/MRI system, enabling simultaneous acquisition of PET and MRI data. (d)–(f) The GE 
Healthcare trimodality (PET/CT and MRI) setup using a dedicated patient transporter tabletop. [(a) and (c) used courtesy of Philips Healthcare, 
(b) courtesy of Siemens Healthcare, and (d)–(f) courtesy of GE Healthcare.]
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the National Electrical Manufacturers Association (NEMA) 
NU 2-2007 standard, demonstrating that its performance was 
not compromised by the presence of the strong MR magnet 
[24]. Most performance parameters were comparable to those 
reported for the commercial Gemini TF PET/CT system.

The design concept of the concurrent BrainPET was 
further exploited to build the Siemens Healthcare Bio-
graph mMR whole-body PET/MRI system, which was 
also installed in a relatively large number of institutions 
[29]. More recently, a simultaneous PET/MRI system 
(SIGNA) based on MR-compatible SiPMs and enabling the 
implementation of TOF capability was introduced in the 
market by GE Healthcare [17].

Most current PET/MRI systems have been tested within 
a high field and proved to produce PET and MR images that 
appear to be free of distortion, confirming the premise that 
the interference between the two systems is almost negligible 
and that each modality is practically invisible to the other 
[17], [24], [27], [29], [30]. Switching clinical workflows to 
PET/MRI introduces a number of image registration chal-
lenges that were not of major concern with traditional PET/
CT scanners. These relate to the additional artifacts within 
MRI, such as bias fields, the range and number of MRI 
sequences, and the range of fields of view (FOVs) and orien-
tations of the acquired images [31]. 

During the last decade, hardware and software advances 
have enabled improved localization of the position of anni-
hilation along the line of response. The precise measurement 
of the difference between the arrival times of the two anni-
hilation photons, referred to as TOF, enables more accurate 
localization of the annihilation point. However, the anni-
hilation point could be located only with limited precision 
owing to inherent uncertainty in the detector modules and 
readout electronics, causing some ambiguity in the photon 
arrival times. As such, the incorporation of TOF information 
in the image reconstruction process enables improved SNR 
and tumor detectability in addition to reduction of patient 
scanning time and/or injected dose, all depending upon 
patient size and coincidence time resolution (CTR). The 
SNR improves as the CTR decreases, and this improvement 
becomes more significant for overweight patients. In a clini-
cal setting, this results in a more homogeneous image qual-
ity across different (and increasing) patient sizes and overall 

yields a much-improved image quality in shorter acquisition 
times, thus providing the possibility to investigate novel 
acquisition protocols, such as whole-body dynamic imag-
ing. The SNR gain when using TOF is equivalent to a non-
TOF image reconstructed using higher statistics; in this way, 
adding TOF information to PET increases the sensitivity of 
the scanner. In addition, TOF PET scanners are less sensi-
tive to inaccuracies in normalization and data correction 
procedures, including attenuation compensation [32]. The 
first commercial TOF PET/MRI scanners using lutetium 
oxyorthosilicate (LSO)/lutetium-yttrium oxyorthosilicate 
(LYSO) crystals and PMT/SiPM photodetectors have a 
time resolution of 400–600 picoseconds [17], [24]. APD-
based hybrid PET/MRI systems, including the BrainPET 
and Biograph mMR scanners, are not equipped with TOF 
capability owing to the poor timing resolution of APDs. A 
CTR of fewer than 100 picoseconds has been obtained with 
short crystals of 3–5 mm [33], [34]. The interaction length of 
511-keV photons in LSO is 12 mm. As such, achieving a sen-
sible detection efficiency requires 15–20-mm-long crystals. 
However, the CTR degrades with increasing length owing to 
the reduction in the speed of light in the high refractive index 
of the scintillator because the position along the length of the 
crystal where the interaction of the 511-keV photon occurred 
is unknown. With advances in detector technology and fast 
electronics, a TOF PET/MRI scanner with sub-100-picosec-
ond CTR will likely be possible in the near future (Figure 3).
The target in the long term is to attain the physical limit of 
spatial resolution for clinical scanners (~2 mm), and by defi-
nition, a target CTR of 20 picoseconds would be required to 
obviate the need of image reconstruction.

Hybrid small-animal PET/MRI is also flourishing in both 
academic and corporate settings, with several prototypes 
based on different design concepts and a number of companies 
already offering commercial solutions [15], [22]. The poten-
tial benefits of compact and integrated systems were already 
recognized, and it is expected that this technology will find 
a niche in preclinical research, which is well under way [35].

Quantitative PET/MRI
PET/MRI shows promise for radiotracer uptake quantifi-
cation via image fusion of molecular and structural data to 
assist in anatomical localization of functional abnormalities 

Table 1. The main features of currently available clinical PET/MRI systems. 

System Manufacturer Operation PET detector/readout Axial FOV (cm) TOF MRI Reference 
Biograph mMR Siemens Healthcare Simultaneous LSO/APDs 25.8 No Verio 3T (modified) [29]
Ingenuity TF Philips Healthcare Sequential LYSO/PMTs 18 Yes Achieva 3T [24]
Signa PET/MRI GE Healthcare Simultaneous LYSO/SiPMs 25 Yes MR750w 3.0T (modified) [17]
Trimodality GE Healthcare Sequential LYSO/PMTs 15.7 Yes MR750w 3.0T [25]
BrainPET Siemens Healthcare Simultaneous LSO/APDs 19.2 No Trio 3T (modified) [30]
Brain MGI Academia Sequential LSO-LYSO/PMTs 25.2 No Magnetom 7T [26]

Adapted with permission from [23].
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and delineation of regions of interest (ROIs) for quantitative 
analysis. However, there are several challenges undermining 
the widespread adoption of this technology, which may, in 
fact, represent inherent limitations. Similar to CT in PET/
CT, MRI provides the structural information suitable for 
implementation of attenuation compensation techniques and 
introduction of a priori anatomical information into image 
reconstruction, partial-volume correction, and motion cor-
rection schemes. However, contrary to PET/CT, in which CT-
based attenuation correction is straightforward, MRI-guided 
attenuation correction is challenging and still requires further 
development [36]. Owing to its clinical relevance and the 
challenges faced, the latter issue is addressed in more detail 
in this article.

MRI-guided attenuation correction in PET/MRI
The development of MRI-guided attenuation correction algo-
rithms has received considerable attention during the last 

decade. This was motivated by the lack of space in PET/MRI 
systems, precluding placement of external radionuclide sources 
within the gantry. MRI-guided attenuation correction is, how-
ever, still in its infancy and remains extremely challenging for 
whole-body imaging. The impact of this limitation on clinical 
interpretation of findings and patient outcome is not yet clear.

MRI-guided attenuation correction is complex because 
MRI signal intensity is not correlated with electron density, 
thus making conversion of signal intensity to attenuation coef-
ficients complicated (Figure 4). MRI-guided attenuation map 
derivation consists of locating and mapping various biological 
tissues with different attenuation properties in the body. This 
can be achieved by one of the three main categories of tech-
niques: 1) MRI segmentation-based techniques, in which the 
body is segmented into regions corresponding to tissues/organs 
with different attenuation properties, followed by assign  ment 
of corresponding linear attenuation coefficients at 511 keV to the 
segmented tissues/organs; 2) atlas-based and machine-learning 

FIGURE 3. The evolution of TOF resolution performance characteristics of current-generation and future-generation TOF PET 
scanners. PS: picoseconds. 
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MR intensity level is not directly related to electronic density, which renders the conversion of MR images to attenuation maps less evident compared 
with CT.
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techniques, in which an aligned MR/CT atlas combined with 
a learning strategy enables the prediction of the pseudo-CT 
from an actual patient’s MR image; and 3) emission-based and 
transmission-based algorithms, in which the TOF emission or 
transmission data are exploited to derive the attenuation map 
(Figure 5) [37].

Segmentation-based methods are simple to implement and 
usually require a single and fast MRI sequence. However, they 
suffer from limited accuracy in the determination of attenu-
ation coefficients owing to the limited number of segmented 
clusters (usually three to five, including air, lungs, fat, soft 
tissue, and fat/nonfat mixture) and the assignment of theoreti-
cal rather than actual patient-specific attenuation coefficients. 
In these techniques, bones and air pockets are replaced by soft 
tissue, and the variability of attenuation coefficients is ignored, 
especially in the lungs. Tissues such as bone and lung and vari-
ous pathological abnormalities with varying attenuations are 
among the most challenging in whole-body imaging. With 
the exception of the use of ultrashort echo time [38] and zero 
echo time [39] pulse sequences, cortical bone has very low 
signal intensity on conventional MRI sequences and is diffi-
cult to distinguish from air cavities and gas in the body. These 
sequences were designed to portray tissues with low proton 
density and short T2 relaxation time (e.g., cortical bone and 
lungs) and, as such, to separate the bone signal from soft tissue. 
The main drawback of these techniques is the long acquisition 

time and susceptibility to artifacts when using a large FOV, 
which limits their application to only brain imaging [37]. A 
number of studies have shown that ignoring bone might not 
be adequate for quantification of osseous lesions with bias in 
estimation in tracer uptake [standardized uptake value (SUV)], 
varying between 5 and 15% in most cases but going up to 30% 
in some cases [40]–[45].

The second category of approaches consists of using rep-
resentative anatomical atlas registration, in which an MRI 
template is registered to a patient’s MRI, and prior knowledge 
of the atlas attenuation properties, obtained by registration 
to a corresponding CT template combined with a learning 
algorithm based on the use of support vector machines, is 
applied to derive a patient-specific attenuation map [46]. Reli-
able deformable registration algorithms play a pivotal role in 
this approach, and failure of the registration process in the 
case of large deformations will produce incorrect results [47]. 
The critical issue is the extent to which the global anatomy 
depicted by an atlas will predict individual and patient-spe-
cific attenuation maps. For this and a few other reasons, most 
techniques proposed so far that belong to this category were 
developed specifically for brain imaging [48], [49]. Adapta-
tion of these techniques for whole-body imaging applications 
required few modifications to be made, consisting mainly 
of generating a four-class segmentation of the MR images 
to improve the registration process and optimal selection of 

MRI

Four-Class MRAC Atlas-Based Registration Emission-Based Technique (MLAA)

FIGURE 5. Strategies for MRI-guided attenuation map generation, including the four-class segmentation-based method, atlas-based registration and machine 
learning, and MRI-guided emission-based technique (MLAA). MRAC: MRI-based attenuation correction. (Figure adapted with permission from [37].)
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regions for the learning process and applying postprocessing 
techniques to determine the tissue class for which sufficient 
information is available from the MRI. In a more recent con-
tribution, Arabi and Zaidi [50] improved the robustness of 
the aforementioned  technique [46] to nonsystematic registra-
tion bias and anatomical abnormalities by discarding locally 
gross misalignment errors from the training and pseudo-CT 
generation process through local sorting of the atlas images 
using the local normalized cross-correlation criterion as a 
metric to assess the similarity to the target image prior to pro-
viding it to the training step. Despite promising preliminary 
results reported in a number of studies using more advanced 
approaches [48], [50], more research is still required to make 
the procedure completely automated and suitable for clinical 
usage in whole-body PET/MRI.

Emission-based techniques form the last category of algo-
rithms and have gained substantial momentum during the last 
decade. They are now recognized as valuable approaches for 
estimation of the attenuation map in PET/MRI through the 
simultaneous estimation of activity and attenuation within a 
maximum-likelihood (MLAA) framework [51]. However, 
these techniques suffer from cross-talk, depend on tracer dis-
tribution, and are susceptible to counting statistics. The use of 
TOF information proved to partially mitigate the cross-talk 
issue and stabilize the joint estimation problem [52]. It is worth 
emphasizing that TOF PET is less sensitive to attenuation 
artifacts than conventional non-TOF PET. Recent advances 
in emission-based techniques demonstrated the promise of 
an MRI-guided MLAA algorithm for attenuation correction 
in whole-body PET/MRI [53]. In this work, the estimation of 
attenuation maps takes advantage of a constrained Gaussian 
mixture model and Markov random field smoothness prior  
imposed by MRI spatial and CT statistical constraints. These 
techniques proved to outperform previous approaches reported 
in the literature [54]. Overall, each category of techniques has 
its own pros and cons, and it is expected that hybrid techniques 
combining at least two (and ideally the three categories of 
attenuation correction methods) will result in more accurate 
and robust techniques.

The many other challenging issues that still have to be 
addressed in this regard, including attenuation of MRI hard-
ware  (tables, rigid and non-rigid RF coils, pillows, headphones, 
medical probes, and other objects that are MRI-invisible but 
contribute to photon attenuation), patient positioning aids in 
the FOV, and conductive MR-compatible or nonconductive 
but MRI-invisible implants, should also be taken into account. 
Another challenging issue is transaxial plane truncation owing 
to the limited MRI FOV, which results in incomplete attenua-
tion maps, producing artifacts on corresponding attenuation-
corrected PET images.

MRI-guided image reconstruction in PET/MRI
One of the important limitations of statistical iterative recon-
struction techniques, such as the maximum-likelihood–
expectation-maximization (ML–EM) algorithm, is that a 
large number of iterations deteriorate image quality and 

amplify noise in PET images [55]. An elegant way to con-
trol the noise characteristics consists of incorporating a prior 
distribution to depict the statistical properties of the image 
to be determined and thus generate a posteriori probability 
distributions from the image conditioned upon the data [10]. 
The well-established Bayesian reconstruction framework 
forms a prevailing expansion of the popular ML–EM algo-
rithm. The maximum a posterior (MAP) estimate is derived 
from maximization of the a posteriori probability over the set 
of probable images [56]. There are many benefits associated 
with this approach in the sense that the diverse mechanisms 
of the prior, including the pseudo-Poisson nature of statis-
tics, nonnegativity of the solution, local voxel correlations, or 
identified presence of anatomical boundaries (from correlated 
structural imaging), may be incorporated into the estimation 
process, evaluated independently, and employed during the 
algorithm’s implementation [10]. Prior anatomical informa-
tion obtained from correlated anatomical imaging can also be 
included in PET reconstruction within a Bayesian framework 
to avoid resolution loss resulting from regularization, albeit to 
recover resolution by taking advantage of the better resolution 
of anatomical images [57]. This has been achieved with vari-
ous degrees of success over the years using MRI [58].

A coupling term is usually incorporated in this category 
of reconstruction techniques, which favors the preservation of 
edges in PET images related to the location of relevant ana-
tomical boundaries extracted from corresponding anatomical 
images. A Gibbs prior distribution is typically used to encour-
age the piecewise smoothness of PET images, which can be 
included in the Bayesian model. Promising preliminary results 
were reported by various investigators using segmentation-free 
anatomical priors based on similarity measures analogous to 
mutual information, but further research and development 
efforts are still required. Therefore, the advent of simultaneous 
hybrid PET/MRI systems creating perfectly aligned molecular 
and anatomical images is stimulating the further development 
and assessment in the clinical setting of Bayesian MAP recon-
struction algorithms.

As an example, a MAP algorithm for PET image recon-
struction incorporating MRI information with joint entropy 
between PET and MRI features serving as the regularization 
constraint was proposed [59]. A nonparametric method was 
then used to estimate the joint probability density of PET 
and MR images. It was demonstrated that incorporation of 
the anatomical information using this approach, following 
parameter optimization, produces significant improvement 
in the noise versus bias tradeoff in ROI-based quantitative 
analysis compared with conventional MAP reconstruction.

MRI-guided partial-volume correction in PET/MRI
The accuracy of PET for measuring regional radiotracer con-
centrations is limited by the finite spatial resolution capability 
of current-generation clinical PET scanners and the result-
ing partial-volume effect (PVE). Accurate PET quantifica-
tion requires that the source size be greater than two to three 
times the scanner’s spatial resolution, expressed in terms of 
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full-width at half-maximum. Any object with smaller dimen-
sions only partly occupies this characteristic volume, such 
that acquired counts are spread over a larger volume owing to 
the limited spatial resolution of the PET scanner. Under these 
circumstances, corresponding PET images still reproduce the 
total amount of radiotracer uptake within an object but do not 
represent the regional activity distribution within this volume. 
A number of strategies have been proposed to correct for 
PVE [60]. The most straightforward approach uses recovery 
coefficients, which can be determined through experimental 
studies involving the use of spheres of different sizes. This 
simple approach produces acceptable results for objects with 
similar shape as the calibration phantom used for derivation 
of recovery coefficients (e.g., tumors of spherical shape). More 
refined approaches rely on anatomically guided postrecon-
struction techniques, in which the size and shape of corre-
sponding objects assessed by structural imaging (MRI or CT) 
[61] are used instead to correct for this effect.

The PVE is among the major concerns in brain PET imag-
ing in connection with quantification of cerebral metabolism in 
the atrophied brain, such as with Alzheimer’s disease. Various 
voxel-based MRI-guided PVE correction methods have been 
proposed. The most popular technique consists of segmenting 
MR images into white and gray matter after PET/MRI regis-
tration. This is followed by convolving the segmented white 
and gray matter images by a Gaussian point spread function 
representing the PET scanner’s spatial resolution. The PVE-
corrected gray matter PET image is achieved by subtracting 
the convolved PET white matter image from the original PET 
image, followed by division by the convolved gray matter MR 
image. The final step involves the application of a binary mask 
to the gray matter region [62].

The overall accuracy achieved by MRI-guided PVE cor-
rection in PET depends upon the accuracy achieved by each 
procedural step, including image registration and MRI seg-
mentation. This has been investigated in detail for the voxel-
based approach [61]. The high soft-tissue contrast provided by 
MRI provides reasonable accuracy in terms of differentiation 
between gray and white matter. Nevertheless, errors in seg-
mentation of brain tissue components have been found to be of 
greater significance [63]. For instance, a 25% error in total vol-
ume produces a 5% decrease in the caudate nucleus apparent 
recovery coefficient [64]. It is interesting to note that the effect 
of segmentation error is limited to the missegmented region. 
Inaccuracies from segmentation can be regarded in the frame-
work of a more broad question of tissue heterogeneity. In fact, 
the main limiting feature of these algorithms is the assumption 
regarding the homogeneity of radiotracer distribution in each 
region or tissue component. Overall, it appears that the success 
of MRI segmentation has a higher impact on the accuracy of 
the corrected estimates [63] compared with the influence of 
image registration, although some studies seem to suggest that 
registration errors have the greatest impact on data accuracy 
and precision [61].

More refined strategies using multiresolution synergetic 
approaches merging anatomical and functional information 

seem to have the potential to overcome the limitations of clas-
sical techniques. However, their feasibility in a clinical setting 
still needs to be demonstrated [65]. PVE correction can also 
be included directly into statistical reconstruction algorithms 
through the use of an appropriate mathematical formulation of 
PVE in the forward model along with other physical degrading 
factors governing the physics of PET [58].

MRI-guided motion compensation in PET/MRI
Recent advances in PET instrumentation have made it pos-
sible to achieve high spatial resolution, which motivates fur-
ther development and clinical implementation of sophisticated 
motion correction strategies. The various sources of motion, 
including unwanted patient motion, cardiac motion, and respi-
ratory motion, and correction strategies specifically developed 
to reduce or eliminate them have been reviewed recently [66]. 
Overall, three broad approaches were reported in the literature: 
1) nonrigid registration of independently reconstructed images; 
2) initial estimation of motion information from gated PET or 
MR/CT images, subsequently used in a new reconstruction 
applied to all gated frames; and 3) simultaneous estimation of 
motion parameters and images.

Motion between or during anatomical/molecular data 
acquisition remains an important challenge for PET/MRI 
protocols. The characteristic misalignment between PET and 
CT images at the level of the diaphragm in PET/CT systems 
resulting from breathing pattern differences is expected to be 
partly addressed by PET/MRI owing to the longer acquisi-
tion time of MRI sequences used for attenuation correction, 
which results in temporal averaging that would improve PET 
and MRI registration in some situations. In addition, the use 
of a specific respiratory protocol in PET/MRI can improve 
the spatial correspondence between PET and MRI. Owing to 
the typical duration of PET data acquisition (2–3 minutes/bed 
position), a PET image corresponds to an average of several 
respiratory cycles and is susceptible to motion-related distor-
tion. Similarly, typical low-resolution MR images suitable for 
attenuation correction involve averages over multiple respira-
tory cycles, although the averaging process in MRI is different 
from that in PET. More importantly, severe motion artifacts 
may appear when there is marked organ motion with increased 
noise and smaller-appearing organ size on the MRI attenua-
tion map, with subsequent bias in the attenuation correction 
procedure. Ideally, PET and MR images should correspond 
to the same phase of the respiratory cycle and be matched to 
achieve accurate attenuation correction and improved spatial 
resolution. To achieve good matching between PET and MR 
images at a specific respiratory phase, the patient’s breathing 
during scanning should be synchronized to reduce distortional 
effects of respiratory motion. Provision of breathing instruc-
tions to patients prior to scanning may also be useful.

An assortment of MRI motion-tracking methods predomi-
nantly for rigid-bodymotion have been employed in the clinical 
setting, including, but not limited to, embedded cloverleafnavi-
gators [67]. One such technique uses motion estimates derived 
from high temporal resolution MRI during simultaneous 
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acquisition of structural or functional MRI data for motion 
correction of corresponding brain PET data, demonstrating 
that MRI-derived motion can be used to improve PET image 
quality, thus increasing confidence in interpretation, reproduc-
ibility, and quantitative accuracy [68].

Current trends focus on four-dimensional MR-derived 
motion correction strategies to reduce artifacts observed in 
PET/CT by developing MRI-guided motion-compensated 
PET attenuation correction schemes, and research efforts 
should focus on designing suitable protocols to minimize 
MRI artifacts while also reducing mismatch between MR and 
PET images. Motion-free PET images are obtained by cor-
recting motion-related blurring through MRI-derived motion 
estimates, allowing for improved image quality and accurate 
quantification of PET data compared with correction using 
PET-only motion information. Concurrent PET/MRI can also 
enable potential nonrigid motion compensation in whole-body 
PET imaging without increasing acquisition time [69]. Fur-
thermore, three-dimensional cine MRI sequences for tracking 
the position and deformation of organs can be used to derive 
deformation fields for incorporation into statistical PET image 
reconstruction algorithms, although this approach can be 
complex [70], [71]. 

The use of tagged MRI for motion tracking in the phase 
domain to derive motion estimates in deformable registration 
during concurrent PET/MRI data acquisition was recently 
reported [72]. The conventional harmonic phase tracking tech-
nique is regularized, and the derived motion fields are incor-
porated in the system matrix of a statistical PET reconstruction 
algorithm. Preliminary results using computer simulations and 
a deformable phantom appear promising. Further investigation 
reported in more recent studies demonstrated the full potential 
of MRI-guided motion correction and its feasibility in clinical 
and research settings [73]–[75].

Clinical applications of PET/MRI
Hybrid whole-body human PET/MRI systems have been 
available since 2010; however, despite the initial excitement, 
the implementation of these systems in a clinical environ-
ment is still in an early phase. Among all potential clinical 
PET/MRI applications, recent advances in adult and pedi-
atric oncology emerge as the most promising application 
fields. So far, only very few studies based on relatively small 
sample sizes have addressed the clinical workflow, feasibil-
ity, and optimized PET/MRI protocols in oncology [76]–[78]. 
Although some authors report no added diagnostic benefit in 
comparison with PET/CT or MRI [76], [79], [80], [81], others 
describe added value in selected cases [82]–[84]. During the 
past two years, there has been only a slow increase in the rate 
of new PET/MRI system installations, mainly owing to lack 
of clearly defined applications, and currently, there is little 
evidence to validate key applications based on the experi-
ence of multiple centers. This lack of significant progress can 
probably be explained by the fact that both MRI and PET/CT 
are powerful methods that are already well implemented in 
everyday clinical oncology.

Clinical workflow and protocols
A particular problem hampering the clinical implementation 
of PET/MRI in oncology is the lack of standardized imaging 
protocols and workflows because large variations in MRI pro-
tocols, sequences, and image requirements exist. Currently, 
most PET/MRI examinations in oncology are obtained using 
multistep protocols, which are very similar in design to PET/
CT protocols. PET/CT protocols include a total-body low-
dose CT, followed by a PET acquisition. In some institutions, 
contrast-enhanced CT is additionally obtained to avoid false-
negative or false-positive PET readings, thereby improving the 
overall diagnostic yield [85]. In analogy to PET/CT, PET/MRI 
examinations can be performed by obtaining a rapid total-
body MRI sequence for attenuation correction and localization 
of focal uptake, which is then followed by a whole-body PET. 
Although this approach is time-effective regardless of scanner 
type (simultaneous or sequential), the approach is not optimal 
for pretherapeutic tumor staging because it provides neither 
detailed anatomical nor functional MRI information.

The second PET/MRI approach consists of a rapid total-
body PET/MRI acquisition and an additional high-resolution 
MRI examination of anatomical ROIs depending on the clini-
cal situation. In simultaneous systems, this full diagnostic MRI 
(anatomical, diffusion-weighted, and perfusion sequences) can 
be performed during the PET acquisition, whereas in sequen-
tial systems, it is usually performed during the 60 minutes nec-
essary for tracer uptake and prior to PET acquisition. However, 
not all MRI sequences can be acquired during the PET acqui-
sition even in simultaneous scanners, and the total PET/MRI 
in-room time may be quite long (60–90 minutes), with most of 
the time being allotted to the MRI acquisition [77], [86], [87]. 
Therefore, in practical terms, the length of the MRI acquisi-
tion is a major limiting factor in the clinical implementation of 
PET/MRI in everyday routine provided that full use of multi-
parametric MRI capabilities is sought.

To compete with PET/CT acquisitions, which usually take 
around 30–40 minutes, some authors [31], [93] have suggested 
limiting the number of MRI sequences to the absolute mini-
mum necessary for the oncologic diagnosis. However, there 
is no consensus today on the essential sequences necessary 
for tumor imaging, and different investigators have proposed 
different protocols. These are based not only on institutional 
preferences and technical parameters specific to different ven-
dors but also on ongoing research protocols, time-effective-
ness issues, cost, and—last but not least—the type of tumor 
to be imaged [76], [77], [88]. For example, there is increas-
ing evidence supporting the utility of routinely obtaining 
diffusion-weighted imaging (DWI) in head and neck cancer 
and lymphoma. Whole-body MRI with DWI has a high sen-
sitivity (96–97%) in the detection of lymphoma [89]. Gu et al. 
[89] evaluated whole-body MRI without and with DWI in the 
detection of known 18F-Fluorodeoxyglucose (18F-FDG)-avid 
lymphomas in 17 adult patients. By adding DWI to anatomical 
MRI, sensitivity was increased from 89% to 97% (p = 0.002); 
in particular, the accuracy for detecting nodal and extranodal 
disease in the abdomen and pelvis was improved, but without 
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affecting overall staging. Lin et al. [90] suggested that whole-
body DWI may help to identify additional lymphoma lesions 
relative to the lesions already identified by 18F-FDG PET/CT, 
whereas Punwani et al. [91] reported the complementary value 
of DWI to 18F-FDG PET for prediction of site-specific inter-
im response to chemotherapy, thereby supporting the need to 
incorporate DWI sequences into integrated PET/MRI proto-
cols for lymphoma. In a similar fashion, Varoquaux et al. [92]
showed that, although DWI and FDG PET may both reflect 
increased cell proliferation in head and neck squamous cell 
carcinoma, the two modalities refer to different biological phe-
nomena, and their respective metrics, apparent diffusion coef-
ficient (ADC) and SUV, are independent biomarkers, thereby 
having the potential to provide complementary information 
(Figures 6 and 7). The same authors showed that measure-
ments of ADC and SUV values are reproducible with almost 
perfect interobserver and intraobserver agreements for both 
methods, and they observed a trend toward higher SUV and 
lower ADC values in poorly differentiated head and neck can-
cers compared to their well-differentiated or moderately dif-
ferentiated counterparts [92].

In an attempt to reduce the total number of MRI sequenc-
es, some investigators have questioned the use of contrast-

enhanced MRI sequences [93]. However, in head and neck 
squamous cell carcinoma, contrast-enhanced MRI sequences 
are superior to CT and PET/CT for a variety of findings that 
are essential for the therapeutic choice, such as invasion of 
the skull base, perineural spread, and retropharyngeal lymph 
nodes or detection of extranodal spread in metastatic lymph 
nodes [86]. In addition, the combination of contrast-enhanced 
T1-weighted and T2-weighted sequences allows more precise 
differentiation between tumor and peritumoral inflammation, 
and it appears that the differentiation between these two con-
ditions on the basis of MRI signal intensity characteristics 
can have direct implications on patient outcome after radia-
tion therapy [86]. Morphologic MRI also appears to provide a 
higher accuracy than FDG PET/CT in detecting residual and/
or recurrent nasopharyngeal carcinoma, and the combination 
of PET/CT and MRI seems to be superior to either modal-
ity alone for the detection and precise locoregional evalua-
tion of recurrent disease [94]. In other tumor types, such as 
in breast cancer, the use of contrast-enhanced MRI sequences 
is essential. As shown by Taneja et al. [81], the morphologic 
MRI appearance of a breast lesion (size, shape, and pattern of 
enhancement) and its time–signal intensity curve after intrave-
nous contrast material (progressive, plateau, or washout) yield 

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 6. Multiparametric PET/MRI in head and neck squamous cell carcinoma. Complementary values of DWI, PET, and contrast-enhanced images: (a) Axial 
T2, (b) T1, (c) contrast-enhanced T1, (d) coronal contrast-enhanced fat-saturated T1, (e) axial PET, (f) fused PET with contrast-enhanced T1, (g) axial b1000 
image from DWI, and (h) fused b1000 with contrast-enhanced T1. Right tonsillar cancer (thick arrows) invading the base of the tongue and posterior oropha-
ryngeal wall and two right level 2 lymph node metastases are shown [thin arrows in (a)–(d)]. (c) Contrast-enhanced T1 reveals nodal necrosis, and (d) the 
corresponding fat-saturated T1 with gadolinium shows extranodal spread particularly well [spiculated margins in (d), thin arrows] not revealed by (a) and (b). 
(e) and (f) show high FDG uptake in the tumor (SUVmax = 9.2) and, on the right, level 2 lymph nodes (SUVmax = 7.5). (g) and (h) show restricted diffusivity in 
the tumor (mean ADC = 1.0 × 10−3 mm2/second) and in the ipsilateral lymph nodes (mean ADC = 1.16 × 10−3 mm2/second). These findings were confirmed 
histologically. A contralateral 8-mm large level 2 lymph node (dashed arrows) with restricted diffusivity (ADC =1.08 × 10−3 mm2/second) is seen in (g) and 
(h). Based on DWI, this left level 2 lymph node is considered suspicious for metastasis, although the FDG uptake and the morphologic aspect instead suggest 
a benign lymph node. Histology revealed moderately differentiated squamous cell carcinoma of the tonsil with bilateral lymph node metastases. 
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a higher sensitivity for the detection of breast cancers than 
18F-FDG PET. Therefore, PET/MR in breast cancer staging 
cannot be performed without contrast material in particular 
because breast lesions and metastatic axillary nodes may be 
18F-FDG–negative. Punwani et al. [95] have shown the indis-
pensable role of dynamic contrast-enhanced MRI in Hodgkin 
lymphoma staging to detect splenic involvement. There are 
many other examples in which contrast-enhanced sequences 
are indispensable in the oncologic context, a detailed descrip-
tion being beyond the scope of this article. It therefore appears 
that contrast-enhanced sequences cannot be excluded from 
the MRI protocol in most oncologic situations without com-
promising MRI performance. Nevertheless, standardized 
PET/MRI protocols and harmonized data acquisition across 
multiple institutions are desirable. As suggested at the Third 
International Symposium on PET/MRI [87], an alternative 
to institutional series would be to create a PET/MRI registry 
for pooling data from multiple centers. Such a registry would 
facilitate evaluation of clinical data in terms of diagnostic per-
formance and would equally expedite the evaluation of the 
impact of PET/MRI on patient management [87].

Finally, the third PET/MRI approach is to perform a total-
body, full diagnostic, high-resolution MRI in addition to the 
total-body PET acquisition. Currently, this option cannot be 
implemented in clinical settings owing to the unacceptably 
long in-room time.

Feasibility studies and PET image quality
in PET/MRI versus PET/CT
Several studies have shown that PET/MRI is feasible with both 
simultaneous and sequential systems in patients with a variety 
of tumors, including lung cancer, breast cancer, brain tumors, 
head and neck cancers, and pediatric tumors [76]–[78], [80], 
[88], [96]. A few authors [76], [78], [79], [93], [96] have com-
pared PET/MRI results with PET/CT results, with all patients 
undergoing a single dose injection of 18F-FDG. Although some 
authors [78], [79] first performed PET/CT and immediately 

thereafter PET/MRI, others chose to perform PET/MRI first 
and then PET/CT. Experienced observers, who were blinded 
to clinical data, evaluated the PET/CT and PET/MRI data sets. 
Despite variable protocols, in all studies, PET/MR image qual-
ity, fusion quality, lesion conspicuity, and anatomical lesion 
localization were good to excellent, and no statistically signifi-
cant difference was found between the rating scores for image 
quality, fusion quality, lesion conspicuity, and anatomical 
localization, as well as with respect to the number of detected 
focal uptake lesions in PET/MRI and PET/CT, respectively  
[76], [78], [79], [96].

In terms of quantification, all authors reported a high corre-
lation for SUV values measured in PET/MRI and PET/CT for 
organs and for malignant and benign focal uptake [76], [78], 
[79]. However, several investigators have reported that SUVs 
for focal uptake and normal organs may be underestimated by 
11–20% in PET/MRI compared with PET/CT; this observed 
underestimation results in a limited concordance of SUV 
measurements between the two modalities [76], [78], [79]. In 
summary, although quantification issues are not yet complete-
ly solved, as discussed in the section on quantitative PET/MRI, 
several studies have shown that for the detection and local-
ization of FDG-avid lesions and for differentiating between 
benign and malignant lesions in pediatric and adult patients, 
PET/MRI results are comparable with PET/CT results. In 
other words, from the clinical point of view, lesion detection 
and characterization with PET/MRI do not appear to be sig-
nificantly affected by limitations in quantitative accuracy. In 
a clinical setting, the significantly lower radiation exposure 
when using PET/MRI compared with PET/CT constitutes an 
important benefit, especially for serial studies and in the pedi-
atric population.

Pitfalls and artifacts
Several artifacts may hamper the interpretation of PET/MRI 
examinations. They are caused mainly by PET/MRI hardware, 
MRI and PET physics, physiologic phenomena, the presence 

(a) (b) (c) (d)

FIGURE 7. The detection of an unknown primary tumor with PET/MRI in a 60-year-old patient with nodal metastasis from squamous cell carcinoma. 
Endoscopy performed prior to PET/MR did not reveal a primary tumor. (a) b1000 image from DWI and (b) fused b1000 with T2-weighted image show 
a large level 2 lymph node metastasis (thick arrows) but no clearly identifiable primary tumor with restricted diffusivity. (c) A corresponding PET image 
and (d) fused PET with T2-weighted image confirm the metastatic node (thick arrows) and also reveal a small suspicious area located in the right pre-
epiglottic space (thin dashed arrows). A repeat deep biopsy showed poorly differentiated squamous cell carcinoma located beneath an intact mucosa of 
the right epiglottis. Retrospectively, a small nodule can be seen on the T2-weighted image (dashed arrow). 
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of medical devices, and MRI contrast agents [97]. Artifacts 
related to the technical aspects and conceptual design of PET/
MRI systems can be caused by the presence of RF coils in the 
FOV and may result in additional attenuation and scatter with 
more complex patterns. Because the position of RF coils is not 
visualized on MR images, integrated systems use fixed coils at 
known positions and do not commonly correct for surface coils 
(which have a negligible effect), whereas sequential systems 
use “coil identification scans” to account for the attenuation 
of RF coils.

Truncation artifacts can be observed in both PET/CT 
and PET/MRI and typically occur in large patients scanned 
with arms down. In PET/MRI, they are caused by the fact 
that the transaxial FOV of the MRI acquisition (+45 cm) 
is smaller than the FOV of the PET acquisition (+70 cm). 
Inhomogeneity of the static magnetic field (B0) and gradi-
ent field nonlinearity at the FOV periphery are additional 
factors predisposing to truncation artifacts. Because parts 
of the body are outside the FOV of the MRI scan, the result-
ing attenuation map is incomplete, thereby leading to visible 
artifacts on the corresponding PET images and underesti-
mation of SUV values. Truncation artifacts can be corrected 
by obtaining a compensated attenuation map from nonat-
tenuation-corrected emission PET data, which is then fused 
with the truncated map [98], or through more advanced 
approaches, such as the MLAA algorithm described in the 
previous section.

Fold-over artifacts occur along the phase-encoding direc-
tion if the chosen FOV of the MRI acquisition is smaller than 
the part of the body that needs to be imaged. Fold-over artifacts 
may lead to incorrect PET quantification but can be easily cor-
rected by changing the direction of phase encoding. However, 
this approach results in a prolonged MRI acquisition time.

Pulsation artifacts occur along the MRI phase-encoding 
direction and are often seen in the chest, head and neck area, 
or upper abdomen. They are the consequence of vascular and 
cardiac pulsation or turbulent flow and may lead to erroneous 
quantification of tracer uptake mainly in lymph nodes located 
along vascular structures. Possible solutions to correct pulsa-
tion artifacts include changing the phase-encoding direction or 
applying flow compensation techniques.

Local destructive interferences, eddy currents and stand-
ing-wave effects, which are more common at 3 T than at 1.5 T, 
can lead to signal loss in the area of interest, thereby impair-
ing PET/MRI interpretation. Eddy currents and standing-
wave artifacts may occur in the upper abdomen of overweight 
patients or in patients with peritoneal fluid. Potential solutions 
include the use of parallel RF coil technology and placing 
cushions with an ionic solution on the abdomen [99].

A recently described effect observed in simultaneous PET/
MRI systems is the shine-through artifact [7]. As reported by 
Kolb et al. [7], the static magnetic field (B0) of the MRI scan-
ner affects the trajectory of positrons by reducing the positron 
range in the plane perpendicular to B0 (axial plane) and by 
elongating the positron range along the direction of B0 (cra-
niocaudal direction). In PET/MRI, the shine-through artifact 

can be seen with low-energy PET radionuclides only if the 
area of high tracer uptake is in the immediate vicinity of an 
air cavity, a situation typically observed in the head and neck 
region. Depending on the orientation of the larynx and tra-
chea in the magnetic field, the magnitude of the artifact may 
vary considerably. It results in an elongated shape of tracer 
uptake on coronal and sagittal images and in an apparently 
increased tracer concentration diametrically opposed to the 
location of the actual lesion. The shine-through artifact can 
potentially lead to overestimation of tumor involvement in 
PET/MRI [7]. Adequate compensation techniques for this 
artifact are not yet available.

Bulk and respiratory motion-induced mismatch between 
MRI and PET data acquisition in sequential scanning can 
result in misregistration. Misregistration can hinder precise 
tumor localization in small-sized lesions and, in severe cases, 
overall image interpretation. To avoid this pitfall, anatomical 
MRI sequences need to be carefully analyzed, and interpre-
tation of PET findings should always take morphology into 
account. Motion artifacts have been reported mainly in head 
and neck cancer patients and pediatric oncology patients. 
Motion artifacts are caused by patient stress from long scan-
ning times, dyspnea, or pain. Careful patient instruction, 
breaks between sequences, or pain medication, whenever nec-
essary, can significantly reduce the number of poor-quality 
images caused by motion. Diaphragmatic excursion during 
respiration may affect interpretation of the basal lung, liver, 
pancreas, and spleen. PET images in both PET/CT and PET/
MR tend to be blurred, the effective resolution above and 
below the diaphragm is diminished, and tracer uptake may be 
underestimated. To avoid misalignment, several authors rec-
ommended acquiring the MRI attenuation correction sequence 
and the anatomical reference sequences during shallow free-
breathing or in end-expiratory breath hold [97], [100]. Current 
developments in PET/MRI utilizing motion-sensitive MRI 
pulse sequences, such as velocity-encoded phase-contrast MRI 
and tagged MRI, have the potential to outperform PET/CT, for 
which similar correction strategies do not exist [99], [101].

Although these methods improve PET image quality, they 
require a modification of the PET/MRI protocol. Recently, 
Manber et al. [102] showed that a respiratory signal could 
be extracted from raw PET list-mode data, thus substantially 
improving clinical PET image quality only by adding an addi-
tional 1-minute dynamic MR scan.

A particular problem encountered in pelvic PET/MRI is the 
misalignment of the bladder owing to the continuous physi-
ologic secretion of urine and resulting bladder volume change 
during the procedure. This problem is encountered mainly 
when patients are imaged with sequential PET/MRI systems. 
Several practical solutions have been proposed, including 
obtaining an additional fast MRI sequence for image fusion 
with PET just before starting the PET acquisition, restricting 
water intake 4 hours before the exam, and asking the patient to 
void just before beginning the image acquisition [77].

Susceptibility artifacts around ferromagnetic objects, typi-
cally dental restorations or osteosynthesis material, result in 
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distortion of the surrounding anatomy and in bright and dark 
areas on all sequences, but most frequently on gradient echo 
sequences, DWI sequences, and fat-saturated sequences. Geo-
metric distortion is a well-recognized problem inherent to 
DWI sequences; it is caused by B0 susceptibility differences. 
Geometric distortion of DWI images is a common cause of 
misregistration of anatomical and b1000 images. In addition 
to the effects on image quality, susceptibility artifacts caused 
by ferromagnetic objects can have an impact on the attenuation 
coefficient on the MRI-based or CT-based attenuation map. 
In consequence, artifacts caused by dental implants, hip pros-
theses, sternal wires, metallic port catheter systems, or other 
metallic implants can affect SUVs measured in PET/MRI and 
PET/CT. In PET/MRI, metallic implants result in an apparent-
ly decreased focal uptake. A priori knowledge of these pitfalls 
avoids erroneous image interpretation. Nevertheless, artifacts 
caused by metallic implants are, in general, larger and more 
disturbing on CT and PET/CT than on MRI and PET/MRI 
(Figure 8). Strategies to reduce metal artifacts in PET/MRI are 
quite challenging, and up until now, this area is still a work 
in progress. New sequences, such as slice encoding for metal 
artifact correction with view angle tilting, have been developed 
for standalone MRI systems; however, they have not yet been 
tested in hybrid PET/MRI systems [103]. A different approach 
for metal artifact correction in PET/MRI has been proposed by 
Ladefoged et al. [104], who developed an automatic algorithm 
for correction of dental artifacts in PET/MRI by first using a 
template of artifact regions and then representing the artifac-
tual regions with a combination of active shape models and 
k-nearest neighbors.

Last but not least, MRI contrast agents, such as iron oxide 
nanoparticles, which are used mainly to detect focal hepa-
tocellular lesions, may hamper the interpretation of PET/
MRI studies. The main effect of iron oxide nanoparticles 
is on T2* relaxation; they cause signal loss in T2*-weighted 
and T2-weighted images owing to the susceptibility effects 
of the iron oxide core. In the liver, the particles accumulate 
in the Kupffer cells of the normal reticuloendothelial system 

while sparing lesions lacking Kupffer cells, such as metas-
tases. Because this effect may last for several weeks, it may 
affect MRI attenuation maps and should be considered when 
interpreting PET/MRI examinations, although some studies 
reported negligible quantification bias because MRI contrast 
agents have almost the same linear attenuation coefficient as 
water [105].

Clinical data on diagnostic accuracy
of PET/MRI in oncology
Very little data are currently available regarding the diagnos-
tic performance of hybrid PET/MRI systems in oncology. This 
fact is due to the difficulty in obtaining a rigorous standard 
of reference based on histology and/or long-term follow-up. In 
most published studies, PET/CT is used as the standard of ref-
erence, whereas one could argue that false-positive and false-
negative readings may equally occur with this modality. From 
a clinical perspective, some incremental progress has been 
reported over the past two years in breast cancer [81], pediatric 
oncology [96], prostate cancer [82], head and neck chondrosar-
coma [83], and neck irradiation [106], whereas no added value 
compared with other imaging modalities (PET/CT or MRI) 
could be demonstrated for lung cancer [107], detection of lung 
nodules [108], and nodal staging in head and neck squamous 
cell carcinoma [80].

Taneja et al. [81] assessed the utility of whole-body 
18F-FDG PET/MRI in the initial staging of breast cancer in 
36 patients with histologically confirmed invasive ductal car-
cinoma. Primary lesions, lymph nodes, and distant metastases 
were evaluated with PET, MRI, and PET/MRI for lesion count 
and diagnostic confidence (DC). The study yielded the highest 
DC score of 5 with PET/MRI compared with PET (median DC 
score = 4) and MRI (median DC score = 4) alone. MRI detect-
ed 47 satellite lesions, of which only 23 (49%) were FDG-avid 
with multifocality and multicentricity in 21 (58%) patients. 
The study equally showed sensitivities of 60 and 93% for 
PET and MRI, respectively, in the detection of axillary lymph 
nodes, with a specificity of 91% for both. Combined PET/MRI 
increased the DC for nodal involvement. Ninety-one meta-
static lesions were detected in PET (DC  4) and 105 in MRI 
(DC  4), with the difference being statistically significant 
(p = 0.001). The authors concluded that PET/MRI is useful as 
an initial staging modality in breast cancer patients because 
the DC is higher with PET/MRI compared with PET or MRI 
alone; however, no statistical comparison was performed to 
evaluate the added value of PET/MRI compared with MRI 
alone [81]. In particular, on the basis of the published figures, 
the authors reported a similar sensitivity and staging accuracy 
with MRI and PET/MRI [81].

Regarding pediatric oncology, several studies have shown 
that PET/MRI is technically feasible in children as young as six 
years old without general anesthesia, as well as in adolescents, 
showing adequate quantitative accuracy with SUVs compared 
with those obtained in PET/CT [96]. Schäfer et al. [96] dem-
onstrated that PET/MRI achieved equivalent lesion detec-
tion rates compared with PET/CT, with the former offering 

(a) (b)

FIGURE 8. Dental artifacts affect PET/MRI less than PET/CT. (a) A PET/
CT image shows major streak artifacts from dental implants hamper-
ing image interpretation. Note the poorly delineated area of higher FDG 
uptake on the right (arrow). (b) A corresponding hybrid PET/MRI (PET 
fused with axial T2-weighted image) image obtained from the same 
patient clearly shows an FDG-avid tumor in the right anterior tonsillar 
pillar (arrow) extending into the retromolar trigone. The biopsy revealed 
squamous cell carcinoma.
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markedly reduced radiation exposure. Currently, reported 
effective radiation doses for PET/CT are in the range of 25 
mSv, whereas for PET/MRI, they are in the range of 7 mSv 
[87]. Child-specific patient preparation procedures are, howev-
er, mandatory to obtain good-quality PET/MRI examinations. 
Among whole-body PET/MRI applications identified in pedi-
atric oncology, staging of Hodgkin lymphoma with DWI and 
dynamic contrast-enhanced MRI sequences has been identi-
fied as promising because PET/MRI can enhance the accuracy 
of lesion detection compared with PET/CT [91]. Data on other 
pediatric tumors, such as sarcomas and neuroblastomas, are 
not yet available.

As opposed to the high signal intensity of the periph-
eral zone, prostate cancers typically display a low signal 
on T2-weighted images. However, tumors arising from the 
transitional zone are often difficult to detect owing to the 
heterogeneous T2 appearance of the transitional zone, with 
this mixed signal being often caused by benign hyperpla-
sia. Therefore, it has been suggested that a multiparametric 
imaging approach including T2-weighted sequences, DWI, 
dynamic contrast-enhanced imaging, and 18F-choline PET 
may improve pretherapeutic diagnostic accuracy. In a recent 
publication based on a series of 24 patients with total pros-
tatectomy, de Perrot et al. [82] demonstrated that 18F-cho-
line PET/MRI had an improved diagnostic accuracy in the 
peripheral zone compared with multiparametric MRI but had 
no added value in the transition zone owing to adenomatous 
hyperplasia. ADC and SUVmax were not correlated biomark-
ers, suggesting that they may provide complementary infor-
mation in the workup of these tumors [82].

Chondrosarcoma of the larynx is a rare, low-grade malig-
nancy; in a minority of cases, a dedifferentiated component 
can occur within a chondrosarcoma. Histologically, a well-
differentiated cartilaginous component is juxtaposed to the 
dedifferentiated component, with an abrupt transition between 
the two tissue types [83]. Purohit et al. [83] reported that the 
diagnosis of dedifferentiation can be suggested in PET/MRI 
owing to the morphologic and metabolic findings because the 
well-differentiated component has a low signal on T1-weight-
ed images, slight peripheral enhancement, a high signal 
on T2-weighted images, high ADC values, and low SUVs, 
whereas the dedifferentiated component has a low signal on 
T1-weighted images, major inhomogeneous enhancement, 
a moderately high signal on T2-weighted images, low ADC 
values, and high SUVs. The authors therefore concluded that 
PET/MRI can provide additional functional information to 
supplement the morphologic mapping and histopathology of 
these tumors [83].

18F-FDG PET/CT is widely accepted as the evaluation meth-
od of choice for staging nonsmall cell lung cancer (NSCLC). 
Heusch et al. [107] compared a dedicated pulmonary 18F-FDG 
PET/MRI protocol with PET/CT for primary and locoregional 
lymph node staging in NSCLC patients using histopathology as 
the standard of reference. The results from PET/MRI and PET/
CT agreed on T stages in all 16 patients (100%). There was no 
statistically significant difference between PET/CT and PET/

MRI regarding detection of lymph node metastases (p = 0.48) 
and SUV measurements, and tumor size measurements derived 
from PET/CT and PET/MRI showed a high correlation. The 
authors concluded that compared with 18F-FDG PET/CT, PET/
MRI with a dedicated pulmonary MRI protocol does not pro-
vide advantages in thoracic staging in NSCLC patients [107].

Most investigators currently consider multidetector CT 
(MDCT) the imaging modality of choice for the detection 
of pulmonary nodules. Although MDCT has high sensitivity 
in the detection of pulmonary nodules, its capability to dif-
ferentiate between benign and malignant nodules in patients 
with primary malignancy is limited [108]. Discrimination 
between malignant and benign nodules is, however, facilitat-
ed by the use of 18F-FDG PET/CT. One of the major potential 
disadvantages of PET/MRI over PET/CT is the lower sensi-
tivity of MRI compared with CT in the detection of small 
pulmonary nodules. Chandarana et al. [108] compared the 
performance of PET, MRI, and combined PET/MRI in the 
detection of lung nodules in oncologic patients with clinical-
ly indicated PET/CT. PET/CT was considered the standard 
of reference. The combination of PET and MRI acquired 
using a hybrid PET/MRI system with a radial T1-weighted 
gradient echo sequence had a higher sensitivity for lung 
nodules compared with PET or MRI alone. The sensitivities 
of PET/MRI were 70, 96, and 23% for all nodules together, 
FDG-avid nodules, and non-FDG-avid nodules, respectively. 
When nodule size was analyzed, PET/MRI had a sensitivity 
of 89% for the detection of nodules with a diameter of at least 
5 mm and a sensitivity of 38% for the detection of lesions 
smaller than 5 mm. The authors therefore concluded that 
PET/MRI has a high sensitivity for FDG-avid lung nodules 
and for nodules 5 mm or larger in diameter but a lower sen-
sitivity for small non-FDG-avid nodules [108]. Results from 
our institution [86] confirm these findings and show that 
although the conspicuity of lung lesions may be less clear in 
PET/MRI compared with PET/CT, FDG-avid lung nodules 
and nodules larger than 5 mm are equally well detected with 
both modalities (Figure 9).

In a prospective study including 38 patients with squamous 
cell carcinoma of the head and neck, Platzek et al. [80] evalu-
ated the performance of PET, MRI, and PET/MRI in the detec-
tion of lymph node metastases. Results were compared on the 
basis of receiver operating characteristic analysis, whereas 
histology served as the standard of reference. Metastatic nodes 
were present in 42% of the 38 patients and in 10% of the 391 
dissected lymph node levels. There were no significant differ-
ences among PET/MRI, MRI, and PET (p > 0.05) regarding 
accuracy for cervical metastatic disease. The authors therefore 
concluded that in head and neck cancer, FDG PET/MRI does 
not significantly improve accuracy for cervical lymph node 
metastases compared with MRI or PET [80]. Nevertheless, it 
is important to mention that MRI did not include DWI acquisi-
tions in this study.

The variable appearance of recurrent tumors after radiation 
therapy of the head and neck and treatment-induced expect-
ed tissue alterations and complications often render MRI or 
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PET/CT image interpretation very demanding. As reported by 
Varoquaux et al. [106], PET/MRI with DWI holds promise to 
facilitate differentiation between tumor recurrence and radia-
tion-induced changes and complications. In particular, multi-
parametric imaging, including anatomical, contrast-enhanced, 
DWI, and PET information, can be very beneficial in solving 
diagnostic dilemmas. In their recent article on DWI/MRI and 
PET/MRI of the irradiated neck, the authors provided a com-
prehensive approach to the understanding of key features of 
radiation-induced edema, fibrosis and scar tissue, soft-tissue 
necrosis, osteochondronecrosis, brain necrosis, and thyroid 
disorders by discussing the complementary role of DWI/
MRI and PET/MRI in these entities and in the detection of 
recurrent disease. The authors concluded that multiparametric 
PET/MRI leads to a major reduction of interpretation pitfalls, 
thereby increasing the DC in interpreting examinations of the 
irradiated neck [106].

Diagnostic challenges related to multiparametric imaging
Interpreting hybrid PET/MRI studies with multiparametric 
data sets can be quite challenging in clinical routine owing 
to the huge amount of complex information and the difficulty 
taking all measured parameters into consideration. Current 
research protocols based on multiparametric data acquisitions 
already use classification algorithms in the analysis of PET/
MRI data, including algorithms based on Gaussian distribu-
tion models or support vector machine analysis. Within the 
same tumor, these classification algorithms can separate tis-
sue regions on the basis of their different PET, ADC, or per-
fusion maps, therefore enabling more accurate differentiation 

between areas of increased proliferation, apoptosis, fibrosis, 
and viable cells. Differentiating between these entities may 
have a tremendous impact on future radiotherapy regimens in 
view of tailored treatment options.

A practical problem that has not yet been solved is how 
to deal with discrepant multiparametric data from PET/MRI 
during everyday image interpretation. Should one rely on the 
morphologic and perfusion information or on the PET or DWI 
information? How should one weight the value of each param-
eter to increase the diagnostic yield and avoid unnecessary 
biopsy? Certainly, the clinical experience of the radiologists and 
nuclear medicine physicians interpreting the data plays a major 
role, and the interdisciplinary collaboration with oncologists, 
surgeons, pathologists, and radiation oncologists for a mean-
ingful integration of all imaging and biological patient data 
is crucial. Although recent publications on the clinical value 
of multiparametric PET/MRI show promising results [106], 
future studies based on larger patient cohorts are required.

Summary and future directions
The bulk of PET/MRI instrumentation research to date has 
focused on building MR-compatible PET detectors and read-
out technologies, reducing the interferences between the two 
imaging modalities, addressing the challenges of quantitative 
PET/MRI in general and MRI-guided PET attenuation cor-
rection in whole-body imaging in particular, devising tools 
for advanced multiparametric imaging, and finding a prima-
ry clinical role (killer application) for PET/MRI [2], [21]. In 
this regard, much worthwhile research in instrumentation and 
quantitative PET/MRI is well under way, and the technical and 
methodological challenges in this area are likely to be resolved 
in the near future. While in the clinic, radiologists and nuclear 
medicine physicians are in search of a primary clinical use of 
PET/MRI that differentiates it from PET/CT; in doing so, they 
are making use of tools designed for PET/CT and assessing 
PET/MRI in the same way as PET/CT.

In summary, the expectations for PET/MRI are high owing 
to the potential to obtain morphologic, functional and meta-
bolic, qualitative, and quantitative information in the same 
examination. The overall consensus among active research 
groups is that multiparametric PET/MRI may add diagnos-
tic certainty in difficult oncologic situations and may also 
help to tailor treatment plans. Recent research has shown that 
compared with PET/CT, PET/MRI can demonstrate equiva-
lent lesion detection rates while offering markedly reduced 
radiation exposure. Although some authors [76], [79], [80], 
[81] have reported no added diagnostic benefit compared 
with PET/CT or MRI, others have described added value in 
selected cases. However, PET/MRI is currently still a long 
way from providing multiparametric information within an 
acceptable time window. In addition, there is no consen-
sus regarding which parameters and how many of them are 
needed to influence relevant clinical endpoints, and deci-
sional algorithms based on multiparametric data still need 
to be developed. Currently, the interpretation of multipara-
metric PET/MRI requires a team effort of imaging experts 

FIGURE 9. The detection of larger FDG-avid pulmonary nodules with PET/
MRI and PET/CT. This patient was a follow-up case of a salivary gland 
adenocarcinoma. (a) and (b) Axial PET/CT and (c) and (d) corresponding 
PET/MR images obtained within 1 hour and after a single-dose injection 
of FDG show a spiculated 10 × 9 × 9-mm large lung nodule with a 
central cavitary area in the upper right lobe and with focal FDG uptake 
(SUVmax PET/CT = 3.9, SUVmax PET/MR = 4.8), suggesting either meta-
static disease or a synchronous second primary tumor. A biopsy revealed 
a second primary pulmonary squamous cell carcinoma. 

(a) (b)

(c) (d)
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with different backgrounds. Although this methodological 
approach is part of ongoing research protocols, it may be 
more difficult to implement in clinical everyday routine. Last 
but not least, cost and reimbursement issues are still a matter 
of debate in many countries.

To aid the implementation of PET/MRI in a clinical envi-
ronment, future studies will need to address several questions: 
What is the advantage of PET/MRI compared with sepa-
rate PET/CT and MRI, in particular, as radiation doses with 
recent CT scanners continue to decrease substantially? What 
is the value of each modality (PET, MRI, and PET/MRI) in 
staging and restaging, personalized treatment decisions, and 
treatment outcome? What are the unique key applications to 
PET/MRI? What is the value of multiparametric quantitative 
analysis tools? Only larger studies based on a solid standard of 
reference, such as histology and/or long-term follow-up, will 
be able to answer these questions.
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C
onventional blind source separation (BSS) methods have become widely adopted tools for neurophysi-
ological data analysis. However, the increasing availability of multiset and multimodal neurophysio-
logical data has posed new challenges for BSS methods originally designed to analyze one data set at a 
time. Concomitantly, there is growing recognition that joint analysis of neurophysiological data has the 

potential to substantially enhance our understanding of brain function by extracting information from 

Multiset and multimodal methods
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complementary modalities and synergistically combining 
the results. Therefore, joint data analysis methods represent 
both a challenge and an opportunity for the neurophysiologi-
cal signal processing community that attempts to enhance 
understanding of normal brain function and the pathophysi-
ology of many brain diseases. Over the past decade, various 
joint blind source separation (JBSS) methods have been 
proposed to simultaneously accommodate multiple data 
sets. In this article, we provide an overview 
and taxonomy of representative JBSS 
methods. We show, through illustrative 
numerical simulations, that different statis-
tical assumptions and tradeoffs underlie 
different JBSS methods, affecting which 
method should be ideally chosen for a 
given application. We then discuss several 
real-world neurophysiological applications 
from both multiset and multimodal per-
spectives, highlighting the benefits of the JBSS methods as 
effective and promising tools for neurophysiological data 
analysis. Finally, we discuss remaining challenges for future 
JBSS development.

Introduction
Studying the electrical or metabolic activity of the brain in 
action—i.e., neurophysiological data analysis—is vital for 
studying human brain function, as it allows the investigation 
of how the brain is able to perceive, process, and act upon 
information. Traditionally, neuroscience has been considered 
“data rich, theory poor,” and substantial effort has been placed 
in finding ways to model and otherwise summarize the vast 
amounts of data generated by newer and more accurate brain 
monitoring technologies. One standard approach is approxi-
mation—for example, in an electroencephalogram (EEG), 
the instantaneous electric potential distribution across many 
electrodes on the scalp can be approximated by a relatively 
small number of dipoles judiciously localized within the 
head. Another approach is factorization of the data into indi-
vidual components that can then be individually examined. 
Such methods include principal component analysis (PCA), 
nonnegative matrix factorization (NMF), and independent 
component analysis (ICA). ICA is typically considered a BSS 
approach, as underlying sources are recovered from observed 
signals with minimal or no prior information about the sourc-
es or the mixing process. ICA has been widely adopted for 
analyzing neurophysiological data [1]. For instance, McKe-
own et al. applied ICA to functional magnetic resonance 
imaging (fMRI) data and derived one independent spatial 
component whose time course closely matched the alterna-
tion pattern between experimental and control tasks [2]. Jung 
et al. employed ICA to decompose EEG data and effectively 
removed contamination from a wide variety of artifactual 
sources in EEG recordings [3]. Although it has been shown 
in many studies that these conventional BSS approaches are 
powerful, their inability to simultaneously model multiple 
data sets has limited their broader usage, especially within 

situations where several types of simultaneously recorded 
neurophysiological data are available.

The emergence of new brain imaging techniques has 
provided researchers with new opportunities to probe brain 
function from different perspectives. Several new techniques 
have been developed (Figure 1) between 1988 and 2014, filling 
in the gaps in the spatiotemporal plane between existing tech-
niques. Perhaps more importantly, collecting multiple types 

of neurophysiological data from the same 
individual has become realistic. Concomi-
tantly, there has been increased recognition 
that information from a single brain map-
ping modality provides an unacceptably 
incomplete picture of brain functioning (for 
a review, see [4]). As has recently been sur-
mised, many current studies in neuroscience 
are performed by individual labs and their 
immediate collaborators, and thus studies 

tend to be restricted to one modality or one place in the spa-
tiotemporal plane of technologies used to probe brain function 
[5]. An example of the limitations of such an approach can be 
seen in the field of neurodegenerative disease—for example, in 
the study of Alzheimer’s disease (AD) or Parkinson’s disease 
(PD). By the time a person becomes clinically symptomatic 
with such a disease, the disease may already be too advanced; 
thus, there is a strong desire to identify early biomarkers. Yet 
finding a single biomarker for different neurodegenerative 
diseases has proven to be elusive, leading to the realization that 
biomarkers combining results from different modalities will 
be necessary [75].

In recent years, joint JBSS methods have emerged to 
meaningfully integrate data from different brain monitoring 
modalities [14], [23]. Here, the term joint means that multiple 
ensembles of underlying sources are simultaneously recovered 
from multiple sets of observed signals based on assumptions 
about dependencies among the data sets. The crucial difference 
between BSS and JBSS is reflected by the fact that BSS only 
examines each data set individually, while JBSS generalizes 
BSS to include similar dependence relations across multiple 
data sets [16]. The concept of JBSS in biomedical engineer-
ing was comprehensively proposed by Adali and Calhoun et al. 
[17], [22], [23], [44], though a few ad hoc methods had already 
been developed before and applied to clinical applications.

It is anticipated that synergistically combining neuroimag-
ing analyses will provide an unprecedented opportunity for 
understanding normal brain function and the pathophysiology 
of many brain diseases. Since each brain imaging modal-
ity is an indirect reflection of underlying neural activity at 
a specific spatiotemporal scale, each single modality pro-
vides a different aspect of brain function [6]. For instance, 
fMRI measures the hemodynamic response related to neural 
activity with fairly good spatial resolution but relatively poor 
temporal resolution. Conversely, EEG measures brain electri-
cal activity with excellent temporal resolution but low spatial 
resolution. A more precise spatiotemporal study of human 
brain function would incorporate integration of both EEG 

The emergence of new 
brain imaging techniques 
has provided researchers 
with new opportunities to 
probe brain function from 
different perspectives.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


88 IEEE SIGNAL PROCESSING MAGAZINE | May 2016 |

and fMRI signals. In clinical applications such as epilepsy, 
high temporal resolution is needed to capture the temporal 
dynamics of epileptic activity, while high spatial resolution is 
essential to determine the seizure focus for subsequent pos-
sible surgical resection. By exploiting complementary infor-
mation from EEG and fMRI, unprecedented spatiotemporal 
accuracy in neuroimaging can be achieved [7]–[9]. Similar 
examples include, but are not limited to, data fusion studies of 
fMRI and MEG [10], fMRI and PET, EEG and MEG [11], and 
fMRI and genetic data [12].

The original JBSS methods were likely canonical correla-
tion analysis (CCA) [60] and partial least squares (PLS) [21]. 
Both methods utilize second-order statistics (SOS), with CCA 
emphasizing the role of correlations among data sets and 
PLS examining covariance information. Since, in general, 
real neurophysiological data do not strictly follow multivariate 
Gaussian distributions (that would have higher order statistical 
moments zero), it is often insufficient to consider only up to 
SOS (i.e., correlation and covariance) for obtaining a unique 
JBSS model. Higher-order statistics (HOS) can therefore 
be employed to enhance the accuracy of estimated sources. 
Another limitation with traditional implementations of CCA 
and PLS is that they accommodate only bisets (here we term 

two data sets as a biset if they are from the same modality and 
as bimodal if they are from two different modalities). However, 
in many applications, more than two data sets are available, 
and a better understanding can be achieved from jointly ana-
lyzing multiple data sets together [22].

Over the past decade, JBSS methods have been devel-
oped to solve two major categories of neurophysiological 
data analysis challenges. The first challenge is the capacity 
to simultaneously handle multiple data sets from the same 
type of neurophysiological data (termed multiset)—for 
example, determining group inferences by combining mul-
tiple fMRI data sets from several subjects [22], [26]. The 
second challenge is the ability to jointly model multiple 
data sets from distinct types of multimodal neurophysio-
logical data—for example, corticomuscular coupling anal-
ysis by integrating EEG, electromyography (EMG), and 
kinematic (KIN) data [27], [36]. In this article, we provide 
a taxonomy of the representative JBSS methods character-
ized by two features: 1) whether or not the method utilizes 
SOS or HOS; and 2) whether the method is designed for 
biset/bimodal or multiset/multimodal data. We comprehen-
sively describe these JBSS methods in a comparative man-
ner and offer illustrative numerical simulations. We then 
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FIGURE 1. The spatiotemporal domain of neuroscience and the main methods available for the study of the nervous system in 2014. Each colored region 
represents the spatial and temporal resolution range for one specific method available for the study of brain function. Open regions represent measure-
ment techniques; filled regions represent perturbation techniques. The inset shows a cartoon rendition of the methods available in 1988, which is notable 
for large gaps where no available methods existed. MEG: magnetoencephalography; PET: positron emission tomography; VSD: voltage-sensitive dye; 
TMS: transcranial magnetic stimulation; 2-DG: 2-deoxyglucose. (Figure used with permission from [5].)
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discuss six real-world neurophysiological applications from 
both the multiset and multimodal perspectives and high-
light the benefits of employing JBSS in these applications. 
Finally, we provide some suggestions on how to select an 
appropriate JBSS method for a given research question, and 
we discuss the potential challenges that remain for future 
JBSS development.

JBSS
In this section, we will provide an overview of representa-
tive JBSS methods. We first formulate the JBSS problem 
and describe relevant notations in detail. We then divide the 
JBSS methods into four categories (i.e., [SOS, HOS] × [biset/
bimodal, multiset/multimodal]) and investigate the theoretical 
underpinnings of the different JBSS methods. For several fun-
damental methods, we perform a thorough comparison based 
on numerical simulations and illustrate their applicability.

A problem formulation and notations
Suppose a total of M data sets are available, which can be col-
lected from the same modality or from multiple modalities. 
Let X[ ]m  denote the mth data set with the size P Nm m# , where 
generally Pm < Nm is assumed, Pm means the number of obser-
vations (e.g., the number of EEG channels), and Nm means the 
number of variables (e.g., the number of time points). It is worth 
noting that the exact meanings of observations and variables 
depend on specific applications. For instance, in group fMRI 
analysis [23], observations usually indicate the subjects or 
time courses while variables represent the voxels or features 
in fMRI data. X[ ]m  can be expressed by its corresponding 
column vectors as [ , , ..., ], ( )m M1X x x x[ ]

( )
[ ]

( )
[ ]

( )
[ ]m m m
N
m

1 2 m # #= .
Here, x( )

[ ]
n
m , for n N1 m# # , with size P 1m #  is the nth realiza-

tion of the random column vector [ , , ..., ]x x xx[ ] [ ] [ ] [ ]m m m
P
m T

1 2 m= ,
where the superscript T denotes the transpose operation. Each 
data set is assumed to be a linear mixture of L underlying 
uncorrelated (or independent) sources:

, ,m M1orx A s X A S[ ] [ ] [ ] [ ] [ ] [ ]m m m m m m # #= = (1)

where s[ ]m  is a random source vector with size L 1# , i.e., 
[ , , ..., ]s s ss[ ] [ ] [ ] [ ]m m m

L
m T

1 2= ; and A[ ]m  is a mixing matrix or mod-
ulation profile with size P Lm # , i.e., [ , , ..., ]A a a a[ ]

( )
[ ]

( )
[ ]

( )
[ ]m m m
L
m

1 2= .
S[ ]m  is a source matrix with size L Nm# , which can 
also be expressed by its corresponding column vectors 
as [ , , ..., ]S s s s[ ]

( )
[ ]

( )
[ ]

( )
[ ]m m m
N
m

1 2 m= , for m M1 # # . Here, for 
,n N1 s( )

[ ]
m n

m# #  with size L 1#  is the nth realization of the 
random column vector s[ ]m .

Two common formulations of JBSS are shown in Fig -
ure 2. In the first formulation, it is assumed that all Nms are 
equal to N. This formulation employs the concept of a source 
component vector (SCV) defined across multiple data sets [15]. 
The lth SCV, [ , , ..., ]s s ss [ ] [ ] [ ]

l l l l
M T1 2

=  ( l L1 # # ), is a random 
vector uncorrelated (or independent) from all other SCVs, and 
the components s[ ]

l
m  within each SCV, defined as source com-

ponents, are maximally dependent. The lth source component 
matrix (SCM) can be defined as N realizations of the lth SCV 

sl  [16], i.e., [ , , ..., ]S s s s( ) ( ) ( )l l l l N1 2= . This formulation is suit-
able for jointly analyzing the data sets with the same number 
of variables, e.g., multisubject fMRI data [23], multitrial EEG 
data [24], [62], and concurrently measured EEG and EMG data 
[28]. The rows of each SCM may represent the common infor-
mation contained among the data sets. In the second formulation, 
it is assumed that all Pms are equal to P. To better explain the 
difference between the two formulations, here we define a 
new concept, the profile component vector (PCV), analagous 
to the above SCV. Here, the lth PCV, [ , , ..., ]a a aa [ ] [ ] [ ]

l l l l
M T1 2

=   
( l L1 # # ), is a random vector uncorrelated with (or independent 
of) all other PCVs, and the components a[ ]

l
m  within each PCV, 

defined as profile components, are maximally dependent. The 
lth profile component matrix (PCM) can be defined as P real-
izations of the lth PCV al , i.e., [ , , ..., ]A a a a( ) ( ) ( )l l l l P

T
1 2=  with 

size P×M. This formulation is suitable for fusing the data sets 
with the same number of observations but different numbers of 
variables, e.g., fusing fMRI, structural MRI (sMRI), and EEG 
data [23], as well as fusing fMRI and single nucleotide poly-
morphism (SNP) data [41]. The columns of each PCM then 
exhibit similar changing patterns across multiple modalities.

Before applying JBSS methods, dimension reduction is 
usually performed on the data to reduce the computational 
cost and to avoid overfitting. However, since any dimension 
reduction method will in general result in loss of information, 
it is important to perform this preprocessing step of JBSS 
carefully. A typical choice of dimension reduction is PCA 
[14], [18], [23]. PCA decomposes each individual data set into 
a set of uncorrelated principal components (PCs) ordered by 
the variance of each component, and it achieves dimension 
reduction by removing insignificant PCs that are assumed to 
represent noise. A potential complication is that the compo-
nents of one data set X[ ]m  that account for most of the variance 
in X[ ]m  and the components of another data set ( )m nX[ ]n !

that account for most of the variance in X[ ]n  may not neces-
sarily correspond with the components that account for most 
of the correlation between X[ ]m  and X[ ]n  [66]. To address this 
issue, a number of methods have been designed to preprocess 
multiple data sets jointly, such as generalized singular value 
decomposition [63], [64], combining PCA/PLS with CCA 
[29], [65], [66], and modeling overall covariation information 
[27], [67]. Heuristics (such as selecting the number of compo-
nents explaining a predefined fraction of variance in the data) 
or information-theoretical criteria are then generally used to 
determine the optimal number of components to retain [66], 
[68]. Under the JBSS framework, since each component in 
one data set has its dependent counterpart in another data 
set, the numbers of components in all data sets are normally 
assumed to be the same. The key idea of those methods is 
to make the components carry as much variation as possible 
within each data set and yet still remain as correlated as pos-
sible across multiple data sets.

A taxonomy of JBSS methods
Historically, JBSS methods have evolved from SOS to 
HOS formulations and from biset/bimodal to multiset/
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multimodal implementations. We can thus divide JBSS 
methods into four categories as shown in Figure 3. Below 
we elaborate representative methods within the four cat-
egories, demonstrating the advantages and disadvantages 
of different methods and providing guidance for their use 
in different situations.

BISET/BIMODAL using SOS
CCA and PLS are two classic JBSS methods that utilize SOS 
(i.e., covariance and correlation) and only process two data 
sets at once. Various extensions to these methods, including 
multiway data and/or sparsity constraints, have led to several 
variants of CCA and PLS (still within this category), including 
multiway PLS (N-PLS) [35], multiblock PLS (mb-PLS) [36], 
PLS+CCA [29], sparse CCA [30], ensemble empirical mode 
decomposition-CCA (EEMD-CCA) [31], [32], and multiway 
CCA [33], described below.

CCA
CCA aims to seek two sets of basis vectors, one for X[ ]1  and the 
other for X[ ]2  (i.e., M = 2), such that the correlations between 
the projections of the variables onto these basis vectors are 
mutually maximized [37]. Through a deflationary procedure, 
several pairs of basis vectors can be derived to ensure that the 
corresponding canonical variates between two data sets are 
maximally correlated and the canonical variates within each 
data set are mutually uncorrelated. When the canonical vari-
ates denote the sources as formulated in Figure 2(a), CCA can 
be utilized to extract highly correlated sources between two 
data sets. Nevertheless, in certain cases, such as the case that 
the dimension of observations Pm = 1, additional techniques 
such as EEMD, whereby a single channel is decomposed 
into different progressively smoother waveforms, are need-
ed to assist in the joint analysis. EEMD-CCA methods have 
been proposed by Sweeney et al. and Chen et al. to remove 
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FIGURE 2. Two popular formulations of JBSS. (a) The common variation information across multiple data sets is assumed to exist in the horizontal 
dimension of source matrices. (b) The common variation information is assumed to exist in the vertical dimension of mixing matrices.
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motion and muscular artifacts in functional near-infrared 
spectroscopy [31] and single-channel EEG data [32]. They first 
decomposed the single-channel data into multichannel data by 
EEMD, then applied CCA to both the obtained multichannel 
data and a time-delayed version of the multichannel data. They 
then kept the highly autocorrelated sources and discarded the 
sources with low autocorrelation. Zhang et al. extended the 
standard CCA method in a steady-state visual evoked potential 
(SSVEP) brain-computer interface (BCI) application [33], by 
jointly analyzing a three-way EEG tensor (channel × time × 
trial) and a reference data set of sine-cosine (harmonic × time).

CCA can also be formulated as in Figure 2(b), where the 
goal is to find the covarying modulation profiles between two 
data sets. In this case, the modulation profiles, instead of the 
sources, become the canonical variates. This formulation is 
particularly useful for data fusion between two different modal-
ities. Additional constraints, such as sparseness, can be incor-
porated into the cost function to improve the interpretability of 
the results. For example, Avants et al. introduced sparse CCA 
by imposing an L1 penalty on the weight vectors in applications 
of fusing diffusion tensor imaging (DTI) and T1-weighted 
structural imaging data collected from healthy subjects and 
subjects with dementia. The sparsity constraint promotes the 
exclusion of voxels in each modality that are of little impor-
tance in predicting voxels in the other modality [30].

PLS
PLS explores the covariation between predictor variables and 
response variables (i.e., M = 2) and tries to find a new set 
of latent variables (LVs) that maximally relate them [34]. In 
other words, the covariance between pairs of LVs should be 
maximized. The PLS problem can be solved by performing 
an eigendecomposition to derive the first pair of weight vec-
tors and thus LVs [38]. To obtain subsequent weights, the algo-
rithm can be repeated with deflated X[ ]1  and X[ ]2  matrices. 
Refer to [29] for details of the calculation procedure. The 
conventional implementation of PLS is limited in that it can 
only simultaneously handle two flat-view (i.e., two-way) data 
matrices. Yet many practical applications may involve a mul-
tidimensional (i.e., multiway) data array, e.g., a time-varying 
EEG spectrum with spatial, spectral, and temporal informa-
tion. A multiway PLS approach has been proposed that finds 
correlations between time-varying EEG spectra and fMRI 
time courses from a single subject by fitting multilinear 
models simultaneously for both data sets with a constraint of 
maximizing the covariance between corresponding temporal 
signatures of the EEG and fMRI [35]. Similarly, a multiblock 
PLS framework to accommodate concurrently recorded EEG 
and EMG data from multiple subjects can be achieved by 
incorporating a hierarchical structure, including individual 
data blocks at a sublevel and the sublevel information integra-
tion at a superlevel [36].

PLS+CCA
PLS and CCA have complementary objectives, and it is pos-
sible to combine them. The goal of PLS is to construct LVs 

that best explain the variation of one data set and still be well 
correlated to the corresponding LVs in the other data set. In 
other words, the first priority of PLS is to find the LVs that 
can explain a significant proportion of variance in each data 
set, and the second priority is to find LVs with relatively high 
correlation coefficients between the two data sets. In contrast, 
the only objective of CCA is to maximize correlation coeffi-
cients between the corresponding LVs extracted from both data 
sets. From this angle, PLS has the advantage that the LVs may 
contain major variation information for individual data sets, 
while the ones extracted by CCA may be trivial—for example, 
a small amount of common noise corrupting both data sets. PLS 
can also handle high dimensional and collinear data, which is 
often the case in real-world medical applications, while apply-
ing CCA directly to such data may be ill-conditioned.

However, a potential limitation of PLS is that higher 
covariance between two corresponding LVs may merely 
result from the larger variance of individual LVs. This may 
not necessarily imply strong correlations between them. To 
overcome this, CCA is a powerful tool to ensure that the cor-
responding LVs extracted from the two data sets are highly 
correlated irrespective of their scales. To take advantage of 
the benefits of both CCA and PLS, Chen et al. proposed com-
bining them as a two-step method, termed PLS+CCA [29]. 
In the first step, PLS is performed to extract LVs that explain 
the variance in individual data sets yet are well correlated to 
the LVs in the other data set, thus removing trivial and irrel-
evant information across data sets. In addition, this step can 
also prevent ill-conditioning sometimes observed when CCA 
is applied directly to raw data. In the second step, CCA is 
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FIGURE 3. The four categories of JBSS methods. The first category 
includes methods handling two data sets and exploiting SOS; the second 
category includes methods handling two data sets and exploiting HOS; 
the third category includes methods handling multiple data sets and ex-
ploiting SOS; and the fourth category includes methods handling multiple 
data sets and exploiting HOS.
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applied to the PLS-derived LVs. After these two steps, it is 
ensured that the extracted components are maximally cor-
related across data sets while still explaining the variation 
within each individual data set.

BISET/BIMODAL using HOS
Both PLS and CCA exploit SOS and can only extract uncorre-
lated LVs. This lack of uniqueness may impede interpretations 
of extracted LVs in real applications [39], which can sometimes 
be circumvented by exploiting HOS. If the data are not strictly 
multivariate Gaussian, SOS (i.e., correlation and covariance) 
will be insufficient for obtaining a unique LV model. ICA 
attempts to find mutually statistically independent sources 
that are linearly superimposed to create 
multivariate data. Since independence is a 
much stronger condition than uncorrelated-
ness, algorithms for ICA, which typically 
employ HOS criteria related to information 
theory and/or non-Gaussianity, can obtain 
unique solutions. ICA has been empiri-
cally shown to be very useful in many bio-
medical applications [1], suggesting a use 
for incorporating ICA into existing JBSS 
methods. The second category of JBSS 
methods, represented by the parallel ICA (pICA) [41] and IC-
PLS [28], were designed for this purpose.

pICA
pICA was developed to identify maximally independent com-
ponents from each of two modalities (M = 2) and connections 
between them through enhancing intrinsic interrelationships 
[40]. PICA largely relaxes the rigid assumption of sharing the 
same mixing matrix in the joint ICA (jICA) model )(M 2$
[26], which is also designed to fuse multimodal data (but will 
be subsequently described in the section “Multiset/Multi-
modal Using HOS”). It maximizes the independence within 
each modality using an entropy-based cost function while 
also identifying intermodality correlations through adding a 
squared correlation term. In the pICA model, there are a total 
of three terms that need to be optimized simultaneously—
two of them relate to maximizing the independence of sourc-
es for the two modalities separately, while the third term is 
the determination of the relationship between the two modali-
ties. During optimization, adaptively adjusting the learning 
rates is critically important for balancing the three aspects in 
the cost function [41].

pICA is formulated as in Figure 2(b). The vertical dimen-
sions Pm of the data sets X[ ]m  may represent, for example, 
the number of healthy subjects and patients with disease. 
The assumption is that the patterns of intersubject modula-
tion across two modalities are similar or covarying. This 
could be reflected by the correlation between the corre-
sponding columns of modulation profiles A[ ]m . The associ-
ated components or sources S[ ]m  from different modalities 
may provide the interpretation from a different view of brain 
function or structure. Therefore, pICA is particularly suited 

for data fusion problems especially in the medical realm. For 
instance, it has been employed to link fMRI and genetic data 
[41], and EEG and SNP data [42].

IC-PLS
IC-PLS is designed to combine the advantages of PLS and ICA 
[28]. The goal of IC-PLS is to extract maximally independent 
sources from two data sets while keeping the correspond-
ing sources correlated across the two data sets (M = 2). 
Thus, the following conditions should be satisfied simultane-
ously: first, the covariance between the corresponding LVs 
across the two data sets should be maximized; second, the 
independence (e.g., non-Gaussianity) of the extracted LVs 

within each data set should be maximized. 
This leads to a multi-objective optimiza-
tion problem, encapsulating three maxi-
mization objectives. A solution using an 
approximate Newton iteration approach 
has been suggested [28]. Similar to pICA, 
care must be taken during weight adjust-
ment to balance the three terms during 
cost function optimization. IC-PLS is for-
mulated as in Figure 2(a). It emphasizes 
the role of the source components S[ ]m ,

but pays little attention to the mixing matrices A[ ]m . It has 
been applied to corticomuscular coupling analysis, extracting 
maximally independent source pairs from concurrent EEG 
and EMG data in order of relevance [28].

MULTISET/MULTIMODAL using SOS
The previously described methods were designed for analysis 
of biset or bimodal data. However, more than two data sets 
from different modalities (i.e., multimodal) or from the same 
modality (i.e., multiset) are frequently available. Thus a third 
category of JBSS methods exploiting SOS have been timely 
developed, including multiset CCA (MCCA) [20], joint multi-
modal statistical framework (JMSF) [27], EEMD-MCCA [25], 
and joint diagonalization of second-order cumulant matrices 
(JDIAG-SOS) [44]. These concepts are expanded upon below.

MULTISET CCA
MCCA ( M 2$ ) extends the theory of CCA (M = 2) [60] to 
more than two random vectors and identifies canonical vari-
ates that summarize the correlation structure among mul-
tiple random vectors by linear transformations [20]. Unlike 
CCA, where correlation between two canonical variates is 
maximized, MCCA aims to optimize an objective function 
to make the canonical variates achieve the maximum overall 
correlation [20]. Recently, it has been shown that MCCA can 
be used to achieve JBSS [22], allowing for jointly analyzing 
multiset data. In such an approach, MCCA is implemented 
in multiple stages, such that one group of canonical vari-
ates is obtained at each stage through optimizing the objec-
tive function with respect to a set of transformation weight 
vectors [22]. Thus the lth group of canonical variates from 
M data sets ( , , , )m M1 2X[ ]m f=  is defined as w X[ ] [ ]

l
m T m   

ICA has been empirically 
shown to be very useful 
in many biomedical 
applications, suggesting 
a use for incorporating 
ICA into existing JBSS 
methods.
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, , ..., , ( ( ))[ ]minl L L1 2 rank X[ ]m= = , and they represent the 
M rows of the lth SCM, as shown in Figure 2(a) (the first for-
mulation). At the first stage, one of the five given cost functions 
in [20], e.g., maximizing the summation of all squared mutual 
correlation coefficients (SSQCOR) between the first group of 
canonical variates, can be directly utilized. At the second and 
higher stages, the estimated canonical variates are constrained 
to be uncorrelated to the ones estimated in the previous stages 
using the same cost function. A deflationary procedure can 
be employed to find the weight vectors. Note that if each data 
set is whitened in advance, the demixing matrix for each data 
set becomes an orthonormal matrix. In this case, removing 
the already extracted sources in the deflationary procedure 
(i.e., the uncorrelatedness constraint) can be converted to the 
orthogonal constraint, indicating the current demixing vector 
to be orthogonal to the previously obtained ones. Imposing the 
orthogonal constraint on the demixing vectors has the ben-
efit that each joint source extraction stage can be solved as a 
constrained optimization problem [20], [22]. Details about the 
model formulation and the implementation of MCCA can be 
found in [22].

MCCA is an effective and efficient way to decompose 
individual data sets into uncorrelated canonical variates while 
keeping the corresponding canonical variates across data sets 
maximally correlated. It has been applied to fMRI data col-
lected from a number of subjects when performing a visuomo-
tor task, resulting in a meaningful group-level consensus [23]. 
It has also been adopted to jointly analyze EEG data collected 
from SSVEP-based BCI experiments [24]. In some special 
cases, when only single-channel data sets are available, addi-
tional techniques such as EEMD are needed to assist the joint 
analysis. For example, Chen et al. proposed an EEMD-MCCA 
method for muscular artifact removal in a single-channel of 
EEG and demonstrated its advantage over the EEMD-CCA 
using simulations [25].

MCCA for multimodal data fusion
MCCA has also been frequently employed for fusing infor-
mation from multiple complementary modalities [22], [23], 
[43], [45]. Unlike the formulation in Figure 2(a), MCCA for 
multimodal data fusion models the covariation along the 
vertical dimension of modulation profiles A[ ]m , as shown in 
Figure 2(b), and treats the corresponding columns of A[ ]m

as a group of canonical variates. The lth group of canoni-
cal variates from M data sets X[ ]m  is defined as X w[ ] [ ]m

l
m

and represents the M columns of the lth PCM, as shown in 
Figure 2(b) (the second formulation). Although MCCA for 
multimodal data fusion is different from MCCA for multi-
set data analysis in terms of the formulation and thus leads 
to different models with different definitions of canoni-
cal variates, they both are based on Kettenring’s original 
description of MCCA [20], i.e., the same cost function and 
the same optimization procedure [22], [23], [45]. After the 
modulation profiles A[ ]m  are obtained, the associated com-
ponents S[ ]m  can be derived in the least-square sense as 

( )S A A A X[ ] [ ] [ ] [ ] [ ]m m T m m T m1= - .

An excellent example of the power of MCCA as a tool for 
multimodal data fusion is in the field of schizophrenia. Data 
from fMRI, sMRI, and EEG data were collected from patients 
diagnosed with schizophrenia and healthy controls when per-
forming an auditory oddball task. The associated components 
linked by the covarying modulation profiles provided addi-
tional insight into connectivity across brain networks and 
changes due to disease. As expected, the fusion of multiple 
modalities was more informative that the fusion of only two 
modalities [45].

JMSF
JMSF is a two-step method simultaneously modeling multiple 
data sets ( M 2$ ) as formulated in Figure 2(a). It is suitable for 
modeling multiple data sets with redundant information, and 
it has been applied to concurrent EEG, EMG, and behavioral 
data for corticomuscular coupling analysis [27]. In the first 
step, denoted as multi-LV extraction, the lth group of sublatent 
variables (subLVs) are defined in each data set as the linear 
combinations w X[ ] [ ]

l
m T m . One common super latent variable 

(supLV), tg , is designed to relate the first group of subLVs. The 
subLVs in each data set carry associated variation informa-
tion, and ( )w X t[ ] [ ]m T m

g1
2  models the covariance information 

between the subLV w X[ ] [ ]m T m
1  and the supLV tg . The supLV 

tg  relates all corresponding subLVs across M data sets simul-
taneously and plays a role as a link bridge. The weight vectors 
w[ ]m

1  can be obtained by solving the constrained optimization 
problem with Lagrange multipliers, and the subsequent weight 
vectors ( , , )l L2w[ ]

l
m f=  can be derived using a deflationary 

procedure [27]. The extracted subLVs in this way will carry 
as much variation as possible within each data set, and while 
the corresponding subLVs will be correlated as closely as pos-
sible. This step is essentially a preliminary LV preparation for 
keeping as much of the relevant variance across multiple data 
sets as possible. In the second step, the extracted subLVs are 
treated as the inputs to MCCA, and the canonical variates with 
maximum correlation are finally recovered.

JDIAG-SOS
JDIAG-SOS was developed to jointly diagonalize multiple 
second-order cumulant matrices ( M 2$ ), and is formulated 
as in Figure 2(a). An off-norm cost function has been designed 
to realize the joint diagonalization [44], and it can be solved 
using a gradient search and more efficiently by iteratively solv-
ing orthogonal Procrustes problems. Compared to MCCA, it 
avoids the limitation of ad hoc cost functions and the error 
accumulation of a deflationary procedure for cost optimiza-
tion. However, it still imposes an orthogonality constraint 
on the estimated demixing matrices, as does MCCA. While 
JDIAG-SOS has been employed to separate the fetal heartbeat 
in electrocardiogram (ECG) [44], it has not yet been widely 
applied to neurophysiological data analytics.

MULTISET/MULTIMODAL using HOS
The fourth category of JBSS methods, which exploit HOS, 
has been developed under different statistical assumptions. 
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Representative methods within this category include group 
ICA [14], [69], [70], jICA [26], linked ICA [46], MCCA+jICA 
[47], [48], three-way pICA [49], and independent vector analy-
sis (IVA) [17]. These are expanded upon below.

Group ICA
Group ICA was initially motivated by the need for drawing 
inferences about groups of subjects (e.g., multisubject fMRI 
data) and is formulated as in Figure 2(a). Several Group ICA 
approaches, each with different assumptions and data grouping 
strategies, have been developed (M 2$ ) [14], [69], [70]. The 
most popular data organization form is concatenating the data 
sets X[ ]m  along the vertical dimension (e.g., temporal concat-
enation in fMRI). This assumes that the data from each subject 
have been spatially transformed to a common template. A key 
assumption with the vertical concatenation is that each data 
set X[ ]m  has a unique mixing matrix A[ ]m , but all data sets 
share a common source subspace S, within which the statis-
tical independence of the sources is maximized. Group ICA 
has been widely applied to fMRI data for group analysis, and 
it is attractive because the unique time courses for each sub-
ject can be detected. An additional back-reconstruction also 
allows for capturing variations in subject-specific spatial maps 
[14]. Nevertheless, this approach requires the very restricting 
assumption that all subjects can be meaningfully spatially 
transformed to the same space so that each voxel can be con-
sidered comparable across subjects. To mitigate problems with 
subtle misregistration, spatial smoothing is often employed, 
but this degrades the spatial resolution of the data.

jICA
Unlike the group ICA’s organization of data sets from one 
single modality (multiset), jICA has been developed to accom-
modate fusing of information from multiple modalities (mul-
timodal) collected in the same set of subjects ( M 2$ ) [26]. 
It is formulated as in Figure 2(b). In jICA, the data sets X[ ]m

are concatenated along the horizontal dimension (e.g., voxels/
time courses) prior to the ICA analysis. jICA assumes that all 
modalities share the same modulation profile A. When it is 
applied to multiple modalities collected from groups of sub-
jects, the assumption is that the intersubject variations across 
these modalities are exactly the same. Although this assump-
tion is fairly stringent, jICA has the advantage of providing a 
parsimonious way to link data sets from multiple modalities, 
and its utility has been demonstrated in a number of medical 
applications [14].

Linked ICA
Linked ICA is designed for discovering common features 
across multiple modalities based on a modular Bayesian 
framework ( M 2$ ) [46]. These modalities can potentially 
have completely different units, noise level, voxel counts, 
spatial smoothnesses, and intensity distributions. Linked 
ICA can be configured to allow tensor ICA or spatially con-
catenated ICA decompositions, or a simultaneous combina-
tion of both [Figure 2(b)]. In linked ICA, each modality is 

modeled using Bayesian tensor ICA, and all of the modalities 
share the same modulation profile (i.e., intersubject variation 
matrix or subject loading matrix). This fully probabilistic 
approach, implemented using variational Bayes, automati-
cally determines the optimal weighting of each modality and 
can also detect single-modality structured components when 
present [46]. Linked ICA has been applied to morphological 
and diffusion sMRI data collected from AD patients and age-
matched controls. One derived joint component had subject 
loadings strongly correlated with age (0.49) and pathology 
(0.30) [46].

MCCA+jICA
MCCA+jICA is a two-step method, combining MCCA and 
jICA ( M 2$ ) [47], [48], which can be formulated either as 
in Figure 2(a) or (b). When the former formulation is adopted, 
it concentrates on the extraction of independent source com-
ponents. Both MCCA and jICA have their individual advan-
tages and disadvantages, and, fortunately, these two methods 
are complementary. As previously mentioned, MCCA is able 
to jointly extract the group of corresponding sources from 
each data set through maximizing the correlations among 
the extracted sources. However, MCCA requires a stringent 
assumption that correlation coefficients of the correspond-
ing sources between multiple data sets be sufficiently distinct. 
MCCA may fail to separate sources whose correlation coef-
ficients are equal or very close, as is frequently seen in bio-
medical data. Specifically, if L sources can be correspondingly 
extracted from each of M data sets, the following requirement 
must be met to successfully recover the sources by MCCA: 
| | | | , ( , , { , , ..., })r r L i j M1 1 2,

( )
,

( )
i j i j 61! # # !a b
a b . Here, 

| |r ,
( )
i j
b  represents the correlation coefficient between the bth 

source from the ith data set and the bth source from the jth data 
set. Therefore, the components extracted by MCCA should be 
regarded as incompletely decomposed sources, i.e., mixtures of 
the true underlying independent components, especially since 
MCCA only exploits SOS.

jICA maximizes the independence of joint sources of mul-
tiple data sets. However, in the jICA framework, all modali-
ties are assumed to share the same mixing matrix—something 
that is not always easily satisfied in practice. By combining 
MCCA and jICA, MCCA first links multiple data sets via cor-
relation and specifies the associated components across data 
sets; then, jICA is performed on the horizontally concatenated 
components to extract joint independent components. In this 
manner, MCCA makes the jICA step more reliable by provid-
ing a closer initial match via correlation, while jICA further 
decomposes the remaining mixtures in the associated com-
ponents and relaxes the requirement of sufficiently distinct 
canonical correlation coefficients. MCCA+jICA demonstrated 
superior performance compared to MCCA and jICA alone 
in both simulations and real studies where EEG, EMG, and 
behavioral data (dynamic forces recorded from a pressure-
responsive bulb) were concurrently collected from normal 
subjects and patients with PD [48]. When MCCA+jICA is for-
mulated as in Figure 2(b), it prioritizes the maximization of 
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correlation between modulation profiles, allowing both highly 
and weakly connected modulations as well as joint independent 
components [47]. It is particularly suitable for jointly analyzing 
data sets from multiple modalities in the same set of subjects. 
For instance, it has been applied to fMRI and DTI data from 
healthy controls and people with schizophrenia patients and 
bipolar disorder [47].

Three-way pICA
Recall that pICA analyzes two data modalities concurrently 
and allows the integration of data from different contexts 
and feature spaces. This flexibility makes pICA particularly 
suitable for data fusion (e.g., MRI and genetic data). Three-
way pICA extends the concept of pICA to include three 
modalities (M = 3), which is formulated as in Figure 2(b)
[49]. It also maximizes independence within each modality 
using an entropy-based cost function, while identifying 
intermodality correlations through adding three squared 
correlation terms. Similar to pICA, an adaptive optimization 
procedure is employed. These online adjustments guaran-
tee the convergence of the three-way pICA. Compared to 
MCCA for multimodal data fusion [23], [45], three-way pICA 
exploits HOS for obtaining statistically independent compo-
nents, which likely leads to a more accurate and meaningful 
estimation. Compared to jICA and linked ICA, three-way 
pICA relaxes the strong assumption of the same modula-
tion profile. Also, in contrast to mCCA+jICA, three-way 
pICA explicitly incorporates the information provided by all 
modalities in one comprehensive data decomposition. It has 
been applied to fMRI, sMRI, and SNP data for investigating 
genetic effects on alcohol dependence and performed better 
than pICA and separate ICA (sICA) in identifying pairwise 
links between modalities and estimating independent com-
ponents [49].

IVA
IVA is a generalization of ICA from one to multiple data 
sets )(M 2$ , originally designed to address the permuta-
tion problem in the frequency domain for the separation of 
acoustic sources [15]. IVA can be formulated within a gen-
eral JBSS framework to ensure that the extracted source 
components are independent within each data set and maxi-
mally correlated across multiple data sets [17]. Specifically, 
the goal of IVA is to identify L independent SCVs sl  from 
M data sets Xm . This can be achieved by minimizing the 
mutual information among the estimated SCVs slu . It can be 
proven that minimizing the IVA cost function is equivalent 
to simultaneously minimizing the entropy of all components 
s[ ]

l
mu  and maximizing the mutual information within each 

estimated SCV slu . IVA can ultimately solve the problem of 
permutation ambiguity when applying BSS techniques to 
multiple data sets. IVA has been shown to achieve superior 
performance than previous techniques in simulation stud-
ies [17]. Although IVA was formulated as in Figure 2(a) in 
[17], it is quite straightforward to formulate IVA as in Figure 
2(b), resembling the relationship between MCCA for multiset 

data analysis and MCCA for multimodal data fusion. IVA 
generalizes MCCA to the case where both SOS and HOS 
are taken into account and where the demixing matrix is not 
constrained to be orthogonal [16]. In a recent study, IVA was 
used to fuse EEG, functional, and sMRI in the manner of 
Figure 2(b) [71].

Different implementation algorithms of IVA involve 
the assumption of specific SCV distributions. The most 
widely used ones include IVA-L [15], which assumes that 
each SCV follows a multivariate Laplace distribution that 
is isotropic and possesses no second-order correlation, 
and IVA-G [17], which assumes each SCV is multivariate 
Gaussian distributed. In applications like speech recogni-
tion [15], the second-order information across data sets 
may be minimal. However, in most neurophysiological 
applications, a second-order dependence across data sets is 
likely. IVA has been utilized in a number of applications, 
such as group fMRI analysis [16] and concurrent multi-
dimensional EEG and unidimensional KIN data analysis 
[19]. Recently, IVA-GL, using the IVA-G solution to ini-
tialize the IVA-L algorithm, has been recommended for 
fMRI applications [18]. The implementation first takes 
into account full second-order dependence among entries 
of an SCV by IVA-G. The estimates of the demixing matri-
ces are then employed to initialize IVA-L, and HOS are 
taken into account by assuming a Laplacian distribution 
for each entry within an SCV. However, since it is a two-
step method, IVA-GL may not work very well if the SCVs 
are not Laplacian distributed. To summarize the different 
methods, Table 1 provides a comprehensive summary of 
all aforementioned JBSS methods in terms of different cat-
egories, motivations, optimization criteria, solutions, soft-
ware, and related major works.

Numerical simulations
In this section, we provide numerical simulations to illustrate 
the applicability and the performance of several fundamental 
JBSS methods. Without loss of generality, we generate three 
data sets (M = 3) and use the JBSS methods related to the first 
formulation [shown in Figure 2(a)] for demonstration. The 
studied representative methods include jICA, MCCA, JDIAG-
SOS, MCCA+jICA, IVA-G, IVA-GL, and sICA. In the follow-
ing simulation, FastICA is employed as the ICA algorithm [61],
and the SSQCOR cost function is used to implement MCCA 
due to its robustness [17], [22].

Data generation
The following six sources were generated and analyzed as 
in [48]:

1 ( . ) ( . )

( . ) ( . )

,

. ( . ) ( . )

. . ( ) ( . ),[ ]
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where n denotes the sample index vector, valued from 1 to 
1,000, and ( , , ..., )s i 1 2 6i =  represents six simulated sourc-
es. Note that here si  is a row vector. Three mixed data sets 

,X X[ ] [ ]1 2 , and X[ ]3  were generated as follows, with each col-
umn denoting one observation in their respective data set:

, , , ,m 1 2 3·X A S[ ] [ ] [ ]m m m= = (3)

where [ ; ; ; ], [ ; ; ; ]s s s s s s s sS S[ ] [ ]1
1 3 2 4

2
1 3 2 5= = * , and S[ ]3 =

**[ ; ; ; ]s s s s1 3 2 6  with the size 4 × 1,000. s2
*  and **s2  denote the 

five-point and 10-point delayed versions of s2 , respectively. 
This is slightly different from the source configuration of the 
simulation in [48]. The underlying sources in each data set are 
shown in Figure 4(a). The sources ,s s1 2 , and s3  exist in all 
data sets, representing common information across them. The 
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FIGURE 4. The original sources in the three mixed data sets and the recovered sources by employing seven different methods: (a) true sources, (b) mixed 
data sets, (c) sICA, (d) jICA, (e) MCCA, (f) JDIAG-SOS, (g) MCCA+jICA, (h) IVA-G, and (i) IVA-GL. (j) A reference for performance comparisons among 
the different methods.
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source s4  only contributes to , sX[ ]1
5  only to X[ ]2 , and s6  only 

to X[ ]3 , representing unique information within each data set. 
sA[ ]m  denote randomly generated mixing matrices with the 

size 4 × 4. Random Gaussian noise with a mean of 0 and a 
standard deviation of 0.05 was independently generated and 
added to each source matrix S[ ]m  before generating the mixed 
data sets [shown in Figure 4(b)].

Simulation results
The source separation results using the seven methods are 
shown in Figure 4(c)–(i). A quantitative performance evalu-
ation based on average correlation coefficient (ACC) was 
also made for reference [Figure 4(j)]. In this simulation, 
ACC is defined as the average of the overall correlation 
between the corresponding original and estimated sources 

( ) ( , :), ( , :) / , ( , , ) .[ ] mm i i 4 1 2 3acc Corr S S[ ] [ ]
i

m m
1

4
= =

=
u/

The results demonstrated that there were distinct differ-
ences between methods. As anticipated, sICA was capable 
of recovering the original sources accurately in all data sets 
[Figure 4(c)] but was unable to meaningfully relate the three 
data sets or rank the sources appropriately. Although a source 
alignment method could be subsequently used to order the 
sources, this may introduce ambiguity, especially when the 
estimated number of sources is high. For jICA, the first jointly 
extracted sources, although perhaps less accurate, were at least 
qualitatively similar to each other [Figure 4(d)]. However, the 
remaining extracted sources seemed to be uninformative, like-
ly due to the stringent assumption that all data sets share the 
same mixing matrix. The sources extracted by MCCA were at 
least automatically ordered in terms of their overall correlation 
coefficient values among the data sets [Figure 4(e)]. However, 
compared to the original sources, the extracted sources were 
distorted, suggesting 1) performance of MCCA may suffer 
when correlation coefficients between corresponding sources 
are equal or very close [22] and 2) uncorrelatedness may not 
be a sufficiently rigorous criterion to accurately recover the 
underlying sources. JDIAG-SOS had an obvious improve-
ment for source recovery. The final two sources across data 
sets were accurately identified and aligned [Figure 4(f)], as 
reflected by the increase of ACC [Figure 4(j)]. However, the 
first two sources were still mixed together, again, likely due to 
the inadequacy of SOS.

When MCCA+jICA was employed, the performance was 
improved [Figure 4(g)]. The sources within all data sets were 
accurately identified and ordered with the focus entirely on 
sources common across the three data sets. MCCA+jICA 
mitigated the deficiencies of both MCCA and jICA and could 
separate sources accurately and link them correctly using less 
stringent assumptions. Nevertheless, MCCA+jICA is a two-
step method. Incorporating source dependency and HOS into 
a unified framework, such as IVA, may further benefit the 
source identification. By using IVA-G, the values of ACC were 
further increased in comparison to those of MCCA+jICA, 
indicating better source separation. This can be seen in Fig-
ure 4(h), in which the third sources within all data sets were 
more precisely recovered in contrast to Figure 4(g). The 

performance of IVA-GL was unsatisfactory as the first sources 
were contaminated by the second ones [Figure 4(i)], probably 
due to the incorrect assumption of the Laplace distribution.

Example applications
In this section, we demonstrate how JBSS methods can be 
used to solve two practical problems in real-world applications: 
simultaneously handling multiple data sets from the same type 
of neurophysiological data, and jointly modeling multiple data 
sets from several distinct types of neurophysiological data. By 
describing the following representative applications, we dem-
onstrate how JBSS can be used to explore information from 
multiset, multimodal neurophysiological data and achieve 
superior performance compared to traditional approaches. In 
addition, we hope that these examples further inspire research-
ers to investigate JBSS for other potential neurophysiological 
applications.

Case studies from the multiset perspective
In the field of neurophysiology, analyzing individual data sets 
separately and then subsequently integrating the results is 
the traditional way for multiset data analysis. However, this 
is suboptimal, since it does not allow for direct interactions 
among multiple data sets. JBSS provides a straightforward 
way to jointly analyze multiple sets of the same type of data 
and exploit the intrinsic data dependency information. In 
the following sections, three successful applications will 
be introduced to demonstrate the benefit of using JBSS, 
including EEG denoising, SSVEP-based BCI, and group 
fMRI data analysis.

EEG denoising
Following its first application to EEG decomposition [3], ICA 
has been extensively investigated in a number of EEG denois-
ing applications. ICA has been established as a standard tool 
for removing several types of artifacts in EEG, such as the 
ECG and the electrooculogram. However, ICA has been shown 
inadequate for removing some types of artifacts, such as mus-
cular artifact [50] and gradient artifact when simultaneous 
EEG/fMRI data are acquired [51]. We introduce recent work 
that suggests how JBSS can be used to address these issues.

Muscular artifact in EEG recordings
Muscle artifact removal from EEG recordings can be particu-
larly challenging, as muscle electrical activity tends to be of 
high amplitude, has a wide frequency spectrum, and a poten-
tially broad anatomical distribution over the scalp [50]. Since 
traditional ICA implementations only exploit spatial informa-
tion while ignoring temporal structure, it is more suited for 
isolating artifacts with stereotyped scalp topographies into 
a single independent component. However, muscle artifacts 
usually include different muscles activated at different times, 
and thus they have nonstereotyped scalp topographies, so 
traditional ICA may not perform effectively in this situation. 
Recently, CCA, as a JBSS method, has been proposed as a 
more robust tool for muscle artifact removal in scalp EEG 
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recordings [37]. Let X[ ]1  be a multichannel EEG recording 
and X[ ]2  be its delayed version. Applying CCA to the two data 
sets leads to the sources that are maximally autocorrelated 
and still mutually uncorrelated. Since muscle artifacts broadly 
distribute in the frequency domain and approach a temporal 
structure of white noise compared to EEG signals of interest, 
these artifacts tend to have relatively low autocorrelation. CCA 
makes use of this distinguishable feature to separate muscle 
artifacts from the interested EEG signals, and CCA was shown 
to outperform ICA on simulated data [37]. Further clinical 
applications also support the usage of CCA because of its per-
formance improvement [52].

Recently, several single-channel techniques have been pro-
posed to remove artifacts in EEG recordings, e.g., EEMD-ICA 
[53] and EEMD-CCA [31], [32]. These applications are impor-
tant for situations where minimal instrumentation is available, 
such as ambulatory healthcare. These single-channel tech-
niques first decompose single-channel data into multichannel 
data by EEMD, then apply ICA or CCA to the obtained multi-
channel data, and finally exclude the sources related to artifacts 
in the reconstruction. Through examinations on both synthetic 
and real-world data, EEMD-CCA has been demonstrated to 
outperform EEMD-ICA for muscular artifact removal in EEG 
recordings [31], [32]. Figure 5 demonstrates an example of 

removing muscle artifacts in ictal EEG signals using two dif-
ferent single-channel techniques. Ictal EEG signals are often 
severely contaminated with muscular artifacts, complicating 
the localization of the ictal onset—which is of great clinical 
importance. In Figure 5(a), a 10-second scalp ictal EEG record-
ing from the BioSource database, contaminated with muscular 
artifacts and eye blinks, is shown (21 channels and 250-Hz 
sampling rate). Muscular artifacts can be observed between 
0–3.9 seconds on channels F7, T3, T5, C3, and T1 and between 
5–10 seconds on channels F8, T4, F4, C4, and P4. Figure 5(a)
shows the ictal EEG signals after removing muscle artifacts 
by applying EEMD-CCA to each channel. Note that muscu-
lar artifacts are effectively removed compared to the original 
EEG (black). The ictal activity in each of the T2, F8, T4, and 
T6 channels is still well preserved. The ictal activity in F8 
and T4, which originally was blurred by muscular artifacts, 
becomes visible after using EEMD-CCA. The decomposition 
results by applying EEMD-ICA and EEMD-CCA to channel 
C3 are presented in Figure 5(c) and (d), respectively. While 
EEMD-CCA is able to isolate muscle activity into the bottom 
two components (indexes 10 and 11), EEMD-ICA is unable to 
effectively separate muscular artifacts from brain activity [e.g., 
as shown in IC9 in Figure 5(c)], demonstrating the advantage of 
using JBSS in this particular application.
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FIGURE 5. (a) An original 10-second scalp ictal EEG recording, (b) cleaned ictal EEG signals using EEMD-CCA (red) compared with the original EEG 
recordings (black), (c) independent components (ICs) of the Channel-C3 EEG signal obtained using EEMD-ICA, and (d) canonical variates (CVs) of the 
Channel-C3 EEG signal obtained using EEMD-CCA. (Figure adapted from [32] with permission.) 
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Gradient artifact
Combining the advantages of EEG and fMRI for high tem-
poral and spatial resolution assessment of brain function is 
an attractive approach. During concurrent and continuous 
EEG-fMRI acquisition, rapidly switching magnetic field gra-
dients and the radio frequency pulses needed to acquire fMRI 
images results in large artifacts in the EEG signals. A number 
of methods for gradient artifact removal have been proposed, 
including average artifact subtraction (AAS), PCA- or ICA-
based template subtraction, and adaptive or spatial filtering. 
Among these methods, AAS is robust and relatively simple. 
Recently, IVA, a JBSS method, has been proposed as a means 
to remove gradient artifact and could potentially achieve bet-
ter performance than that of AAS [51]. Unlike AAS, which 
just takes the average over epochs to create a gradient arti-
fact template, IVA exploits the dependency of gradient arti-
facts across channels and reshapes multichannel EEG signals 
into multiple data sets, as shown in Figure 6. From continuous 
EEG signals, P (here P = 20) epochs are extracted in each 
single channel, and the duration of each epoch is equal to a 
repeat time (2 seconds, with a sampling rate of 1,024 Hz). All 
epochs from a single channel are reshaped into a data set X[ ]m ,
and M (here M = 30) channels provide M data sets for the IVA 
algorithm. From each data set, IVA provides P= 20 estimated 
sources with length N= 2,048. As the gradient artifact is pres-
ent in all channels and all epochs of the raw EEG signals, it is 
anticipated that after applying IVA, the first components (i.e., 
the first SCV) extracted from the M data sets will correspond 
to the gradient artifacts contained in the M channels. The first 
component from each data set (Figure 6) is quasiperiodic, 
highly suggesting that it is related to gradient artifact, which 
is confirmed by subsequent frequency analysis. EEG signals 
with the artifact minimized can be obtained by removing 
the components related to gradient artifacts during the back 

reconstruction. With such an approach, IVA has been demon-
strated to consistently outperform AAS on both simulated and 
real-world EEG/fMRI data [51].

SSVEP-based BCI
BCI is a communication system that translates electrical brain 
activity (typically measured by EEG) into computer com-
mands, and, hence, it provides a communication channel for 
severely disabled people. SSVEP-based BCI has been increas-
ingly studied due to its reduced training requirement and 
higher ultimate information transfer rates compared to those 
of other BCI techniques. In an SSVEP application, different 
regions of the computer screen, corresponding to different 
potential choices for communication purposes, flicker at dif-
ferent frequencies and/or phases. If subjects want to select a 
particular choice, they direct their attention to the appropri-
ate region on the computer screen. An SSVEP is then detect-
able over occipital scalp regions at the same frequency as the 
flicker frequency, and its harmonics are also detectable [54]. 
SSVEP-based BCI is designed to detect the subject’s desired 
commands by recognizing the SSVEP-induced frequencies in 
the EEG signals. However, SSVEP responses are likely to be 
contaminated by background EEG and other noise. Therefore, 
identifying the frequency components with high accuracy is 
a particularly challenging and important issue for designing 
a reliable SSVEP-based BCI, and a number of methods have 
been proposed for this purpose. The CCA-based recognition 
method has significantly better recognition performance than 
traditional power spectral density analysis [55]. By using CCA, 
correlations are maximized between the multichannel EEG 
and reference signals (e.g., the sine-cosine waves in [55]) at 
each of the used stimulus frequencies. The stimulus frequency 
that yields the maximal correlation coefficient is recognized 
as the target frequency. Although CCA works well in many 
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FIGURE 6. An illustration of separating continuous EEG data into epochs for JBSS and the decomposition results of applying IVA. (Figure adapted from 
[51] with permission.)
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studies in SSVEP-based BCIs, directly using the sine-cosine 
waves as the reference signals may be problematic in practice 
due to subject-specific and intertrial effects.

MCCA was introduced as a natural way to extract SSVEP 
common features from multiple trials of EEG signals record-
ed at the same stimulus frequency ( , , ..., )f r R1 2r = , as shown 
in Figure 7(a). For each subject focusing on a particular screen 
area associated with a specific stimulus frequency, M trials 
of EEG are collected, which form M data sets. In this particu-
lar example, each trial of EEG includes P = 30 channels and 
N = 250 time points sampled at 250 Hz. As SSVEP respons-
es relevant to the same fr are present in all trials of the raw 
EEG signals, it is anticipated that the first components (i.e., 
the first SCM in the red box) from applying MCCA to the 
M data sets more accurately represent reference signals at 
fr than the original, pure sine-cosine waves do. Since M =
19 data sets are available, the optimized reference signals at 
each frequency, denoted by each red box, have the dimension 
19 × 250. Then, given a new EEG trial, the CCA-based meth-
od is utilized to recognize the target frequency. Figure 7(b)
shows examples of the two types of reference signals, includ-
ing the sine-cosine waves (top) and the data-driven reference 
signals optimized by MCCA (bottom). The procedure of the 
reference signal optimization in the MCCA-based method 
is completely based on the training data. An experimental 
study [24] has demonstrated that the MCCA-based method 
improved the recognition accuracy when compared with pre-
vious methods relying on the sine-cosine wave type of refer-
ence signals, and thus it provided a new promising tool for 
frequency recognition in SSVEP-based BCIs.

Group fMRI inference
Detection of activation-related signal changes in fMRI data 
is a challenging issue due to the relatively low image con-
trast-to-noise ratio of the blood oxygenation level depen-
dent (BOLD) fMRI signal, head movement, and undesired 
physiological sources of variability [16]. McKeown et al. 
first applied ICA to fMRI data analysis and demonstrated 
that a number of spatially independent sources with spe-
cific temporal characteristics were present in fMRI data 
[2]. ICA has subsequently been successfully employed in a 
number of fMRI applications. However, ICA can only be 
performed on each data set separately, and it does not make 
use of the statistical dependence across data sets. Mak-
ing inferences on groups of subjects, e.g., control versus 
patient, is often the goal of fMRI studies. Group ICA has 
been a popular method for jointly analyzing multisubject 
fMRI data. Nevertheless, the assumption of the common 
subspace for all subjects in the group ICA may limit its 
ability to capture individual subject variability that may be 
seen in spatial maps.

Unlike group ICA, IVA does not limit the solution space 
and does not require back-reconstruction for spatial compo-
nents, but rather it directly estimates a demixing matrix for 
each data set (i.e., each subject) simultaneously. Figure 8(a)
illustrates the detailed procedure of utilizing IVA to extract 
group-level spatial maps. Recently, IVA has been inves-
tigated in studies of the group fMRI analysis [18]. IVA, as 
a more general JBSS framework, is able to better capture 
intersubject variability, which is of crucial importance for 
group comparison studies. Therefore, IVA typically produces 
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FIGURE 7. (a) An illustration of the MCCA-based method for the SSVEP frequency recognition and (b) examples of the reference signals that are sine-cosine waves 
(top) and that are optimized by MCCA (bottom). (Figure adapted from [24] with permission.) 
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components with more activated voxels and better definitions 
of components, as shown in Figure 8(b) [e.g., the case for the 
default mode network (DMN)].

Case studies from the multimodal perspective
A current trend in neurophysiological studies is to col-
lect measurements from a variety of modalities, e.g., EEG 
data, fMRI data, sMRI data, genetic data, and so on. Here 
we introduce three specific applications to demonstrate the 
strengths of JBSS in multimodal data fusion, including EEG-
fMRI fusion, corticomuscular coupling analysis, and brain 
imaging genetics.

Joint EEG-fMRI analysis
Given that currently no single brain imaging tool can provide 
an optimal combination of spatial and temporal resolution, it 
is particularly attractive to fuse EEG signals (with excellent 
temporal resolution) and fMRI data (with excellent spatial 
resolution) when both modalities are concurrently available. 

Conventional methods first analyze each modality separately 
(e.g., via decomposition) and then explore the relationship of 
the components (e.g., via correlating). A method that is able to 
simultaneously model the EEG and fMRI data is preferable. 
Multiway PLS (N-PLS), a JBSS method, provides a natural 
way to identify EEG spectral/spatial atoms having the maxi-
mal temporal covariance with fMRI spatial signatures [35]. 
Here, each EEG atom is the outer product of spatial, spectral, 
and temporal signatures, and each fMRI atom is the product 
of spatial and temporal signatures. To temporally align the 
EEG data with the fMRI signal, the EEG data recorded dur-
ing each TR interval are used to estimate an EEG spectrum. 
The decomposition is constrained to maximize the covariance 
between corresponding temporal signatures of the EEG and 
the fMRI data, as shown in Figure 9. Subsequent statistical 
testing has shown one atom associated with the alpha band 
having significant temporal correlation with the fMRI signal 
[35]. Brain regions participating in the control of alpha rhythm 
included the parietooccipital cortex, thalamus, and insula 
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FIGURE 8. (a) An illustration of IVA for multisubject fMRI analysis and (b) examples of estimated spatial maps derived from IVA and the group ICA 
decompositions. (Figure adapted from [18] with permission.) 
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inferred from the spatial map of fMRI, while the EEG only 
included the parietooccipital electrodes. This indicates that 
joint analysis of EEG and fMRI data meaningfully extends 
the spatiotemporal resolution and sensitivity of each modality.

Coupling analysis between EEG, EMG, and KIN data
Corticomuscular coupling analysis, i.e., studying simul-
taneous cortical and muscular activity typically during 
sustained isometric muscle contraction, is a key technique 
to assess functional interactions in the motor control sys-
tem. The most common analysis method to compare the 
simultaneously measured EEG and EMG signals is the 
magnitude-squared coherence (MSC), which is a normal-
ized measure of correlation between two signals in the fre-
quency domain. Despite MSC’s popularity, several implicit 
assumptions of MSC potentially limit its usefulness in 
practical scenarios, including 1) difficulty in robustly 
assessing group inference, 2) only handling two modalities 
simultaneously, 3) the biologically implausible assumption 
of pair-wise interactions (i.e., emphasizing the role of indi-
vidual loci in the brain), and 4) directly applying the analy-
sis to raw EEG and EMG data, leading to a low coherence 
value since only a small fraction of ongoing EEG activity 
is related to motor control.

To address the above limits of MSC, efficient multimodal 
data-driven methods are needed for corticomuscular coupling 
analysis. For instance, when studying altered corticomuscu-
lar activity in PD, with concurrent EEG, EMG, and KIN data 
collected from patients with PD and control subjects during a 
dynamic force tracking task, a more data-driven way of esti-
mating common underlying sources to achieve group-level 
spatial consensus is required. MCCA+jICA is a method to 
meet the requirement from the JBSS point of view [48]. As 
shown in Figure 10, with the assumption that all subjects share 
common group patterns in the temporal dimension, all sub-
jects’ data sets are first correspondingly concatenated along 
the feature dimension. In this case, the EEG features could be 
interchannel correlation coefficients, band-limited energy val-
ues, and/or coherence values; the EMG feature could be the 

amplitude. Then multi-LV extraction is utilized for dimension 
reduction, and MCCA+jICA is subsequently employed for joint 
source extraction. The source in the EEG features, which is 
most correlated with the corresponding sources in EMG and 
KIN, is then adopted to do regression on the original EEG fea-
tures for each subject. Finally, statistical tests are applied to the 
weights in each group for generating spatial patterns [48]. The 
demonstrated results enhanced occipital connectivity in PD 
subjects, consistent with the fact that PD subjects rely exces-
sively on visual information to counteract the deficiency of 
being able to generate internal commands from their impaired 
basal ganglia [48].

Genetic data fused with brain imaging data
Imaging genetics combines genetic information and neuroim-
aging data of the same subjects with the aim to discover neu-
ral mechanisms of psychiatric disorders. It provides a unique 
way to investigate genetic influence on the variation of brain 
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attributes. Traditional methods either do not explicitly incor-
porate the information provided by all modalities in one com-
prehensive analysis, or they have not yet been widely applied 
to more than two modalities [56]. Under the situation that 
genetic (e.g., SNP), structural (e.g., sMRI), 
and functional (e.g., fMRI) data are all 
available, the need for leveraging valuable 
information from those complementary 
modalities is evident. Recently, three-way 
pICA has been introduced as a useful JBSS 
tool in identifying pairwise links between 
modalities and estimating associated inde-
pendent components within each modality 
[49]. A recent study investigated genetic 
effects on alcohol dependence [49], and, 
as illustrated in Figure 11, subjects with 
alcohol dependence underwent functional and sMRI scans 
and also provided saliva for SNP generation. The three types 
of data were concatenated along the subject dimension. Then 
three-way pICA was applied to the sMRI, fMRI, and SNP 
data, extracting intersubject covariation patterns (i.e., modula-
tion profiles) across the three modalities and their associated 
independent components. Through statistical tests, significant 
links between a SNP component, a functional component, and 
a gray matter component were identified: the SNP component 
implicated mental disorder associated genes including BDNF, 
GRIN2B, and NRG1; the functional component demonstrated 
increased activation in the precuneus area; and the structural 
component involved part of the DMN and the caudate.

Discussion
In this article, four categories of JBSS methods (i.e., [SOS 
versus HOS] × [biset/biomodal versus multiset/multimodal]) 
have been introduced in terms of their motivations, formula-
tions, characteristics, and feasible applications, and they have 
been summarized in Table 1. For a given neurophysiologi-
cal application, since a rich set of JBSS methods is available, 

several key points should be taken into account for choosing 
an appropriate JBSS method. It is straightforward to choose 
bimodal versus multimodal categories by counting the number 
of data sets that need to be jointly analyzed, i.e., determining 

M = 2 or M > 2. In most cases, the multi-
set/multimodal methods can still be used if 
M = 2 (e.g., jICA and IVA). Nevertheless, 
the group ICA may fail to function well if 
the number M is too low to achieve statisti-
cally significant results. Depending on the 
statistical properties of the specific data of 
interest, one needs to determine what type 
of statistics to use, e.g., choosing SOS or 
HOS. In practice, if the data follow Gaussian 
distributions, exploiting SOS is sufficient to 
recover the underlying components and is 

also more computationally efficient (e.g., MCCA). Otherwise, 
HOS is generally preferred for ultimate source separation.

When SOS are employed, one needs to consider which 
measure, correlation or covariance, should be used. This 
depends on the problem itself: PLS and its variants exploit 
covariance information, while CCA-based methods and 
JDIAG-SOS exploit correlation information. JDIAG-SOS 
is more generalized than MCCA, since the former is based 
on the joint diagonalization of multiple cumulant matrices 
while the latter solves ad hoc cost functions by a deflation-
ary procedure; but they both impose orthogonality con-
straints on demixing matrices, which may limit the solution 
space examined. When HOS are utilized, one needs to con-
sider the assumptions of the different methods. Group ICA 
and jICA simply use temporal and spatial concatenations 
by assuming a common source space and the same mix-
ing matrix respectively. Linked ICA is able to incorporate 
multiple modalities with similar spatial properties into one 
modality group and use tensor decomposition by assuming 
the same mixing matrix across different modality groups; 
modalities in the same group share the same source space. 
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Thus, linked ICA is a method encapsulating the ideas from 
both group ICA and jICA. MCCA+jICA may relax the strin-
gent assumption of jICA and lead to improved source sepa-
ration performance. IC-PLS considers both independence 
and covariance aspects and focuses on 
source extraction. pICA flexibly identi-
fies both independent sources and their 
links across modalities. IVA, using mutu-
al information rate minimization, extracts 
independent sources and maximally cor-
relates them across multiple data sets. 
IC-PLS, pICA, and IVA do not have any 
stringent assumption for source spaces 
and mixing matrices, indicating that each data set has its 
unique mixing and source matrices.

A number of recent studies demonstrate that IVA is supe-
rior to others for JBSS as formulated in Figure 2(a) [17], [18]. 
Compared with CCA, PLS, and IC-PLS, IVA is able to joint-
ly model more than two data sets. In contrast to MCCA and 
JDIAG-SOS, IVA incorporates statistics higher than two 
and also allows a general nonorthogonal demixing matrix. 
Unlike other ICA-based JBSS methods, IVA does not con-
strain mixing or source matrices to be the same. However, 
just as ICA and the methods using ICA, IVA does need a 
predefined probability distribution such as IVA-G using 
Gaussian distribution and IVA-L employing Laplace distri-
bution. IVA-G takes into account second-order correlation 
across data sets while IVA-L does not. In medical applica-
tions, the source dependency in second-order is reasonable. 
It has been previously shown that for non-Gaussian sources, 
IVA-G can be superior to identifying sources in each data set 
independently using a BSS algorithm followed by an opti-
mal source alignment algorithm. This is a key motivation 
for JBSS and the general IVA formulation. IVA-G can even 
outperform IVA-L for non-Gaussian sources as long as suf-
ficient second-order dependency across data sets exists [17]. 
Lately, IVA based on multivariate generalized Gaussian 
distribution has also been developed and can fit more gen-
eral situations [57]. It is worth emphasizing that while most 
JBSS methods take HOS and source dependence across data 
sets into account, they do not take sample dependence into 
account. To our knowledge, methods recently proposed in 
[44], [72] are the only solutions that exploit sample depen-
dence in addition to HOS and source dependence. Finally, 
the unique information contained in each individual data 
set may be important. On one hand, under the JBSS frame-
work, after the common information has been extracted, the 
unique information in each data set can still be explored by 
using the methods such as orthogonal signal correction [27], 
[74]; on the other hand, JBSS methods have the ability to 
capture the variability of the source components within the 
same SCV, indicating that though the source components 
within the same SCV are dependent, they possess some 
unique information [18].

No single study has investigated all possible JBSS 
methods and demonstrated their strength and weakness 

thoroughly for one specific neurophysiological problem. 
Most studies have only applied one or two methods to real-
world data and obtained preliminary results. Inferring the 
validity of such results is difficult, as often the “ground 

truth” is not currently known and must be 
indirectly inferred. This emphasizes the 
need for strengthening the collaboration 
between clinical neurophysiologists and 
researchers in biomedical engineering and 
signal processing, particularly in the era 
of “big data” [5]. There also exist several 
challenges for the development of JBSS 
methods in the field of neurophysiology. 

Current available JBSS methods generally assume given 
data sets are temporally stationary. However, most neuro-
physiological signals are known to be highly nonstationary, 
especially for brain imaging techniques with high temporal 
resolution, such as EEG recordings. Aforementioned JBSS 
methods assume that the number of underlying sources in 
each data set is equal to or less than that of observations 
(i.e., L Pm# ), actually leading to (over)determined prob-
lems. Nevertheless, most real-world JBSS problems are in 
fact underdetermined, especially in this era of ambulatory 
healthcare systems, which utilize minimal instrumentation 
(e.g., even single-channel). In current JBSS frameworks, 
only latent components and their dependency across data sets 
have been considered, while identifying latent subspaces and 
finding the relations among subspaces across data sets may 
provide novel neurophysiological interpretations with differ-
ent potential applications [58], [59]. While this review article 
has been largely focused on statistical JBSS methods in the 
field of neurophysiology, we note that there are deterministic 
approaches in other fields (e.g., speech recognition [73]).

In conclusion, JBSS is a promising research direction to 
combine multiple sets of neurophysiological data from the 
same modality or multiple modalities. It has been successfully 
employed in many medical applications and helped medical 
researchers derive interesting results, which are otherwise 
unobtainable using traditional BSS methods. This article has 
provided a comprehensive overview for these JBSS methods 
and related applications. It is expected that JBSS will continue 
to draw increasing attention from the neurophysiological com-
munity and will be widely applied and further developed for 
solving novel real-world problems.
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Improving FIR Filters by Using Cascade Techniques

High-performance filtering is the holy 
grail for all digital signal processing 
(DSP) practitioners. However, high-

performance filtering is almost synony-
mous with high implementation 
complexity and, thus, high cost. This arti-
cle focuses on designing high-perfor-
mance finite impulse response (FIR) 
filters with less complexity. We present 
novel methods for improving the fre-
quency response of an FIR filter by cas-
cading it with complementary comb 
filters (CCFs). In particular, we redesign 
a low-order FIR filter by intentionally 
inducing a ripple at the passband edge 
and using CCFs of various lengths to 
compensate for the ripple. We use the 
zeros of CCFs to reshape the frequency 
response of the low-order FIR filter, sub-
sequently called the prototype filter.
Thus, the composite filter approaches an 
ideal lowpass filter (LPF) more closely in 
both the transition band and stopband. 
Because a CCF contains only one adder 
and a few storage units, the cost is mini-
mal. The composite filter also maintains 
a linear phase response because all CCFs 
have linear phase responses. Through 
shifting the LPF response to high-fre-
quency bands, we obtain highpass filters 
and bandpass filters (BPFs) by using the 
same methodology.

State-of-the-art design
FIR filters can achieve linear phase 
responses and preserve the envelope of 
input signals in contrast to infinite 
impulse response (IIR) filters; however, 
their applications are often restricted by 
high computation complexity. An FIR fil-

ter block diagram with five filter taps is 
shown in Figure 1. The filter output 
sequence ( )y n  can be related with the fil-
ter input sequence ( )x n  by using

.y n h m x n m
m 0

4
= -

=

/^ ^ ^h h h (1)

The filter coefficients to be designed 
are denoted by , , , .h m m 0 4f=^ h

Numerous FIR filter design techniques 
exist, such as the window design [1], 
Parks–McClellan design [2], minimum-
phase equiripple design [3], and inter-
polated equiripple design [3]. However, 
all of these designs approach an ideal 
LPF in various ways and are generally 
tradeoffs among the following design 
targets: 1) flatness or ripple(s) at the 
passband, 2) sharpness at the transition 
band, and 3) suppression at the stop-
band. However, an ideal LPF can 
almost always be approached if imple-
mentation complexity is not a concern. 
This indicates that, for a fixed filter tap 
number, when flatness is gained at the 
passband, the other two design targets 
are lost. In other words, a new design 
that surpasses the described state-of-the-
art designs in all three design targets is 
highly desired. This article proposes an 
answer to this problem.

Cascaded filters
Improving FIR filters by using simple 
cascaded structures can approach an 
ideal filter in terms of the following 
design considerations: 1) flatness at the 
passband, 2) sharpness at the transition 
band, and 3) suppression at the stop-
band. The composite FIR filter consists 
of one prototype filter and one shaping 
filter, which is composed of cascaded 
CCFs of various lengths. As shown in 
Figure 2, the resultant transfer function 
is expressed as follows [1]:

( ) ( ) ( ) .z z zH H Hcmp sha pro= (2)

( )zHsha  and ( )zHpro  denote the transfer 
function of the shaping filter and proto-
type filter, respectively. ( )zX  and ( )zY
denote the input and output of the sys-
tem, respectively.

The transfer function of a CCF is 
defined as [4]

,H z z1ccb
K_ + -^ h (3)

where the filter order , , ,K 1 2 3 f= .
The two filter coefficients of ( )zHccb

are both ones, and we can realize a CCF 
by using only one adder and K  memory 
units. In addition, the coefficients are 

Digital Object Identifier 10.1109/MSP.2016.2519919
Date of publication: 27 April 2016 FIGURE 1. An FIR filter block diagram.
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symmetric. Thus, ( )zHccb  has a linear 
phase response [5]. Because the CCF is 
sufficiently simple, the computation 
complexity is limited despite numerous 
CCFs being used. There are K zeros for 
a CCF, and its zeros are used to reshape 

( )zHpro . The zeros of ( )zHccb  are 
obtained by solving ( )zH 0ccb = .
Applying De Moivre’s formula [6] to 
z 1K =-  yields [4]
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Comparing (4) with z e j= =~

cos sinj~ ~+^ ^h h, we can locate zeros 
of ( )Hccb ~  as

, , , ,  .
K

n n K2 0 1 1n f~
r r= + = -

(5)

Figure 3 displays the magnitude fre-
quency responses of CCFs for 

, , ,K 1 2 3 4= . In the following dis-
cussion, all of the filter frequency 
responses at  0~=  rad/sample are nor-
malized to 0 dB to facilitate compari-
son. Although the CCFs are simple to 
implement, their frequency responses 
are not satisfactory for reshaping an 
LPF. We must elaborate on the combi-
nation of CCFs of various lengths to 
reshape the prototype filter.

Figure 4 shows an example of cascad-
ing CCFs of orders , , , , .K 1 2 3 4 5=   
Using a cascade of CCFs to reshape an 
LPF is markedly more effective than 
using a single CCF. Note that the shap-
ing filter has no multiplier; it uses nine 
adders and 24 memory units. A by-prod-
uct of the shaping filter is that it pre-
serves the linear phase response for the 
composite filter. One trick for improv-
ing a prototype filter is to use cascad-
ed CCFs to reshape it. Another 
method, called the modified window 
design method, is to deliberately 
design a prototype filter that has an 
overshoot at the passband edge so that 
the composite filter has a flat pass-
band. We then detail the design of a 
lowpass prototype filter.

Modified window design method
The window method for FIR filter 
design begins with determining the cut-
off frequency of a continuous LPF, 
which is plotted in a solid black line in 
Figure 5(a). The continuous LPF is 
assumed to be ideal with a unity gain at 
low frequencies and zero (infinite atten-

uation) beyond the cutoff frequency [1]. 
Let the sample rate of the discrete filter 
be fs . The frequency response ( )H f  on 

/ /f f2 2s s-6 @ is then simulated using a 
discrete frequency-domain representa-
tion ( )H m  with N samples, which are 
plotted in black dots in Figure 5(b). The 
passband of ( )H f  is equivalent to that 

FIR FIR

Shaping Filter Prototype Filter

X (z ) Y (z ) = Hsha(z ) Hpro(z ) X (z )
Hsha(z ) Hpro(z )

Hsha(z ) X (z )

FIGURE 2. The structure of a composite FIR filter.
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of the M  frequency-domain samples of 
( )H m . Notice that ( )H m  is periodic 

with a period identical to the sample 
rate fs . We then apply the discrete fre-
quency response ( )H m  to the inverse 
discrete Fourier transform (IDFT) 
equation to get the time domain ( )nh∞ .
The filter coefficients are obtained by 
calculating ( )( ) ( )nh n h w n∞= $ , where 

( )w n  represents a window function to 
truncate ( )nh∞ .

In this article, to design the proto-
type filter with a deliberately generated 
ripple at the passband edge, we remodel 
a continuous LPF frequency response 

( )H f  by using an exponential function. 
This method is called the modified win-
dow design method.

In contrast to the window design 
method, the passband frequency 
response of the modified window design 
method is exponential and is zero 

beyond the cutoff frequency. For the 
modified window design method, the 
discrete frequency response is simulat-
ed using , /H m e M 1 2m= - -c^ ^h h

/m M 1 2# # -^ h . Notice that the 
parameter c controls the shape of ( ) .H m
When c is set at zero, ( )H m  is reduced 
to that for the traditional window design 
method. Applying ( )H m  as a symmetric 
exponential function induces a ripple at 
the passband edge so that the composite 
filter has a flat passband. The time-
domain filter coefficients ( )nh∞  is 
obtained by applying the IDFT equation 
to ( )H m  as

( ) ,nh
N

e e1

( )/

/
/

( )

m M

M
m j mn N

1 2

1 2
2∞ = c r

=- -

-

/
(6)

where n  is an integer. If we set c at 
zero, then the modified window design 
method is reduced to the traditional 
window design method. Reorganizing 
(6), we obtain the simplified representa-
tion of ( )nh∞  as

( ) .cosnh
N

e
N
mn1 1 2 2

m

M

m
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=
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/ ` j> H

(7)

The filter coefficients are obtained by 
calculating

( ) ( ) ( ),n n nh h w∞= $ (8)

where ( )w n  represents a window func-
tion to truncate ( )nh∞ . More coeffi-
cients can be used for ( )w n  to narrow 
the filter transition region. As c increas-
es, the ripple induced at the passband 
becomes more substantial.

Both the window design method and 
modified method enhance the stopband 
attenuation through a smooth window 
function other than a rectangular win-
dow function. Some commonly used 
window functions include the Black-
man, Chebyshev, and Kaiser window 
functions [1]. We adopt the Blackman 
window for illustration.

Figure 6 presents a comparison of 
the magnitude frequency responses 
for difference choices of c  designed 
using the modified window design 
method. In contrast to the traditional 

1
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FIGURE 5. LPF frequency responses for the modified window design method and the window design 
method: (a) continuous frequency response H(f); (b) periodic, discrete frequency response H(m).
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FIGURE 6. The comparison of the magnitude frequency responses of two lowpass FIR filters de-
signed using the modified window design method. One filter is with c= 0 and the other is with c > 0.
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window design method ( 0c = ), the 
magnitude frequency response for the 
case 02c  tends to have a wider 
passband width. Let the magnitude 
variation at the cutoff frequency c~

be Δc  and the magnitude variation for 
the case 0c =  be Δ0 . Using c

enables the prototype filter to cascade 
with the shaping filter. The composite 
filter is supposed to have an amount 
of magnitude attenuation at the cutoff 
frequency identical to that of the com-
peting filters, which we call baseline 
filters in a subsequent section.

Figure 7 shows the relationship 
between the magnitude variation Δc

and c  at .0 1c~ r=  rad/sample. The 
lowpass FIR filter has 33 taps, and the 
Blackman window function is used. 
The value of Δc  increases from Δ0  to 
+5.35 dB as c  increases from 0 to 
0.28, and Δc  tends to saturate when c
is higher than 0.2.

Design procedures
Observing Figure 6 shows that the 
response of the prototype filter at c~

plays a key role in meeting the design 
specifications. The main design specifica-
tion regarding filter frequency response is 
the magnitude of the passband ripple, 
which affects how the shaping filter is 
designed. More precisely, if the targeted 
passband ripple of the composite filter 
has a magnitude of Δ0-  decibels, where 

0Δ0 1 , then the margin for cascading 
CCFs at the cutoff frequency c~  is 
Δ Δ0-c . Suppose there are a total of L
types of CCFs whose passband widths 
are all higher than c~ . We use ki  CCFs 
of order i , where , , ,i L1 2 f= , to con-
struct the shaping filter by cascading all 
of them. We can relate the transfer func-
tion of the composite filter as

( )

.

zH H z z

z z

1

1 1

cmp pro
k

k L k

1

2 L

1

2g

= +

+ +

-

- -

$

$

^ h

(9)

If ki  equals zero, then we use no CCF 
of order i .

Let id  denote the attenuation of 
an  order-i CCF at c~  with respect to 
its  response at dc. Notice that the atte-
nuation increases with respect to 
the  increase of the filter order; 

0 L1 2 g1 1 1 1d d d . We can cas-
cade some CCFs with the prototype filter 
so that the frequency response at c~

approaches Δ0. More precisely, the filter 
design problem can be transferred to an 
integer programming problem in search-
ing feasible sets , , ,k k kL1 2 f^ h. We for-
mulate the integer programming problem 
as in (10) shown in the box at the  bottom 
of the page. 

The indicator function 1A  in (10) is 
1 if A is true and 0 if A is false. Equa-
tion (10) searches feasible solutions 
that correspond to a combination of 
CCFs having as diverse responses as 
possible. Equation (11) constrains ,ki

for , ,i L1 f= , to be either natural 
numbers (positive integers, denoted as 
N ) or zeros. Equation (12) refines the 
candidate solutions so that the attenua-
tion induced by the shaping filter at c~

reaches the extreme. Alternatively, the 
attenuation reaches either the amount 
Δ Δ0-c  or no less than Δ Δ0 1d- -c .
Finally, (13) limits the complexity of the 
shaping filter to a maximum of h CCFs.

In the next paragraph, we present 
our filter design procedures. The design 
specifications include 1) the magnitude 
of the passband ripple, Δ0  dB, 2) the 
tap number of the prototype filter, Q ,
and 3) the cutoff frequency, c~ .

Step 1
Determine the maximal order L  of the 
CCFs that constitute the shaping filter 
and calculate their amounts of attenua-
tion at c~ . For example, if c~  is 0.1r
rad/sample, from (5) we conclude that 
L 9= . We tabulate the attenuations id

for i L1 # #  in Table 1.

Step 2
Determine the relation between c and 
Δc  at c~  for a prototype filter designed 
using the modified window design 
method. This relation depends on the 
value of the cutoff frequency. When c~

is 0.1r  rad/sample and Q  is 33, the 
results are shown in Figure 7.

Step 3
According to Figure 7, use one c  so 
that the margin Δ Δ0-c  is sufficient 
for cascading a prototype filter. For an 
ordinary lowpass FIR filter, where c~

lies between 0.1r  and 0.4r  rad/sam-
ple, set c  at 0.1. Thus, the resulting Δc

is +3.5 dB and the margin Δ Δ0-c

becomes 8.79 dB.

Step 4
Obtain the transfer function of the 
prototype filter ( )H zpro  by using the 

γ
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FIGURE 7. The relationship between the magnitude variation Dc and c at ~c = 0.1r rad/sample.
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modified window design method, where 
the parameter c  is obtained in Step 3.

Step 5
Determine the maximum number of 
CCFs to be used in the shaping filter. 
This parameter is denoted as h , which 

constrains the complexity of the 
shaping filter. For example, we can set 
it at 10h = .

Step 6
Substitute the results obtained in Steps 
1–5 into (10)–(13), and find all the fea-
sible solutions. This optimization prob-
lem can be solved using the software 
MATLAB. Table 2 shows the number 
of feasible solutions that meet the con-
straints. Among the 44 candidate solu-
tions, only four of them maximize (10): 
(k1, k2, k3, k4, k5, k6, k7, k8, k9) = (2, 2, 3, 
1, 1, 0, 0, 0, 0), (1, 1, 2, 1, 0, 1, 0, 0, 0), 
(2, 3, 1, 1, 0, 1, 0, 0, 0), (4, 2, 1, 2, 1, 0, 
0, 0, 0). These four solutions correspond 
to our composite filters 1–4.

Step 7
Construct the transfer function of the 
composite FIR filter by using (2). This 
completes our filter design procedures.

LPF design example
To emphasize the superiority of the pro-
posed tricks over the old filter design 
methods mentioned in filter design text-
books, we compare our composite FIR 
filter with three widely used methods 
under the constraint of identical pass-

band flatness. These three baseline FIR 
filter designs are 1) the window design 
method [1], 3) the Parks–McClellan 
FIR filter design method [2], and 3) 
the cascaded integrator-comb (CIC) fil-
ter [7]. Please note that although the 
Butterworth and Chebyshev filters can 
easily outperform these three baseline 
FIR designs in magnitude response, they 
belong to IIR filters and cannot achieve 
linear phase responses. Therefore, we 
omit IIR filters from our comparison. 
For information on the cascading tricks 
for improving an IIR filter, readers can 
refer to the techniques mentioned in [4].

For the first solution, the frequency 
response of the shaping filter is shown in 
Figure 4, and the frequency response of 
the composite FIR filter is presented in 
Figure 8. Figure 8 also displays the three 
baseline filters for comparison. Each of 
the two baseline filters designed using the 
Parks–McClellan design method and the 
window design method has a number of 
taps (33) identical to that of our prototype 
filter. The only difference among them 
lies in their filter coefficients. The third 
baseline filter is an 11-tap CIC filter, 
which also meets the targeted passband 
specification. Clearly, composite filter 1 
has the sharpest transition band and the 
highest suppression at the stopband 
compared with the three baseline filters, 
except for the response at  .0 58~=

(rad/sample). However, the magnitude 
response of the composite filter at 

.0 58~=  (rad/sample) is approximately 
–50 dB. Compared with the three base-
line filters, our composite FIR filter has a 
more favorable overall response. As 
shown in Figure 8, all four filters have 
linear phase responses at the passband.

Figure 9 shows a pole-zero diagram 
of the shaping filter of composite filter 1. 
Because the shaping filter consists of 
only FIR filters, there are only zeros and 
no pole on the z-plane. In particular, all 
of the zeros are on the unit circle 
because all of the filter coefficients of 
CCFs are ones. Substituting z e j= ~  for 
the filter zeros in Figure 9 indicates that 
all the zeros are located outside the pass-
band of the prototype filter. Some fre-
quencies possess two, three, or even 
more zeros. This implies that both the 
transition band and stopband of the 
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FIGURE 8. A comparison of the frequency responses of composite FIR filter 1 and the three 
baseline filters.

Table 2. The number of candidate solutions 
satisfying (11)–(13). 

Constraint(s)
Number of candidate 
solutions

Equation (11) 9,369
Equations (11), (12) 418
Equations (11)–(13) 44

Table 1. The relation between CCF order 
and attenuation at ~c.

Filter order, i
First zero, ~0
(rad/sample)

Attenuation, di
(dB)

1 r 0.1
2 0.5r 0.44
3 0.33r 1
4 0.25r 1.84
5 0.2r 3
6 0.167r 4.62
7 0.143r 6.86
8 0.125r 10.2
9 0.111r 16.1
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prototype filter are either sharpened or 
suppressed by the shaping filter.

Figures 10–12 present comparisons 
of our composite FIR filters (2, 3, and 
4) with the three baseline filters. Except 
at a few isolated frequencies, our com-
posite FIR filters outperform the three 
baseline filters at nearly all the frequen-
cy bands. For filters 1, 3, and 4, the 
improvement in magnitude responses 
can easily exceed 20 dB. Because the 
shaping filter consists of CCFs with 
symmetric coefficients, the composite 
filter preserves a linear phase response 
at its passband.

Bandpass and highpass 
FIR filter design
The design of a lowpass FIR filter can 
be used as the first step in designing a 
bandpass FIR filter or a highpass FIR 
filter [1]. This article presents tricks 
for designing an FIR LPF with an 
exceptionally sharp transition band 
and a highly suppressed stopband. We 
can shift its frequency response in the 
frequency domain by multiplying a 
sinusoid ( )nsshift  of an appropriate fre-
quency with the composite filter’s 
coefficients. The realization of a band-
pass/highpass composite filter is pre-
sented in Figure 13.

When designing a highpass FIR fil-
ter, the frequency of the sinusoid is 

/f 2s  Hz. The sinusoid sequence is

( )

, , , , , , . ,..

ns e e

1 1 1 1 1 1

shift
j

f
nT j n

1
2

2
s

s= =

= - - -

r r

^

c ^

h

m h

(14)

where Ts  is the reciprocal of the sample 
rate fs .

For designing a bandpass FIR filter, a 
suitable sinusoid is selected according to 
the passband center of the desired BPF. 
If the passband is located at, for exam-
ple, /f 4s+  Hz, then the sinusoid 
sequence is

( )

, , , , , ,  . ...

ns e e

j j j1 1 1

/
shift

j
f

nT j n
2

2
4

2s
s= =

= - -

r r

^

c ^

h

m h

(15)

However, when the passband of the 
LPF is separated into two parts, where 

one part is located at /f 4s+  Hz and the 
other part is located at /f 4s-  Hz, the 
sinusoid sequence thus becomes

( )

, , , , , ,  . ...

cos

ns e e

f
nT

2
1

2
4

1 0 1 0 1 0

( ) ( )
shift

j
f

nT j
f
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s
s

3
2

4
2

4
s

s
s

s

r

= +

=

= -

r r -

$ $

^

`

c

c c

m

h

jm m

(16)

Conclusions
This article presented tricks for design-
ing composite filters with exceptionally 
sharp transition bands and highly 
suppressed stopbands. We first design a 
lowpass prototype FIR filter by using 
the modified window design method, 
whose passband width exceeds the 
design specifications. After solving a 
mathematic optimization problem that 

–1 –0.5 0 0.5 1

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1
3

3

2

2

Real Part

Im
ag

in
ar

y 
P

ar
t

6

FIGURE 9. Pole-zero diagram of the shaping filter of composite FIR filter 1.
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FIGURE 10. The comparison of the frequency responses of composite FIR filter 2 and the three baseline 
filters.
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accounts for the implementation 
complexity and design specifications, 
we obtain the shaping filter. The 
shaping filter consists of only CCFs of 
various lengths and is of negligible 
complexity. On the basis of the 
composite FIR LPF, we can obtain the 
design of bandpass and highpass FIR 
filters by multiplying the filter 
coefficients with a sinusoid. All of 
these composite filters preserve 
appealing linear phase responses at 
the  passbands. In most cases, our 
composite filters can easily reach more 
than 20-dB magnitude improvement 
in  the transition bands and at the 
stopbands, compared with competing 
baseline FIR filters.
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FIGURE 13. The filter structure of a bandpass/highpass composite filter.
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Narrowband Notch Filter Using Feedback Structure

T he design of a notch filter poses 
challenges in managing the trad-
eoff between distortion in the pass-

band and the notch band. The ideal 
notch filter has a 3-dB notch bandwidth 
(BW) equal to zero in the notch band 
and the unity gain in the passband. 
Therefore,  the 
design objective is 
to shrink the BW
as small as possi-
ble while preserv-
ing the gain as 
close to one as 
possible. The task of a notch filter is to 
eliminate interference while preserving 
the target broadband signal. These 
filters have many applications for 
narrowband interference removal in 
biomedical engineering [1], speech pro-
cessing [2], image processing [3], [4],
and communication [5].

In this article, we describe two 
ways to implement a notch filter. First, 
we present a simple notch filter and 
then illustrate why its performance is 
less than ideal. Next, we present a trick 
to apply a novel feedback structure to 
that notch filter, which improves its 
performance to nearly ideal. With the 
help of the feedback structure, we 
obtain an adjustable parameter. By 
tuning this parameter, different char-
acteristics of the notch filter are 
obtained due to the change of its 
poles’ position.

A simple notch filter
The simplest conventional notch filter is 
given by [6]

( )
( )
( )

,
cos
cos

C z
z z
z z

1 2
1 2

n 1 2 2

1 2

t ~ t

~
=
- +

- +
- -

- -

*

*

(1)

where ~*  is the notch frequency and t
is the radius of the poles of ( )C zn . For 
stability, one needs to limit the radius to 

0 1<# t .  That 
is, poles should 
reside within the 
z-domain’s unit 
circle. The magni-
tude responses of 

( )C zn  with differ-
ent poles’ radii of ( )C zn  are shown in 
Figure 1. This notch filter attenuates the 
signals whose frequencies are in the 
vicinity of ~*  and allows other fre-
quencies to pass.

The problem and the solution
We find that the notch filter shown in 
Figure 1 does not have narrow BW and 
unity gain. The BW is not narrow 
enough to effectively eliminate the 
undesired frequency components, and 

the nonunity gain in the passband 
amplifies other frequency components 
of the input signal.

There is a way to cure this 
problem—apply a feedback structure to 
a notch filter. The general feedback 
transfer function is given by

( )
( )

( ) ( )
,H z

C z
C z

1
1

N
a

a
=

+
+

(2)

where 0$a  for stability and ( )C z  rep-
resents any type of existing notch filter. 
Note that, if 0a = , the feedback 
structure has no effect and the new 
filter is equal to the original one, i.e., 

( ) ( )H z C zN = . The block diagram is 
illustrated in Figure 2(a). This method 
not only enhances the effectiveness of 
any existing notch filter but also gives 
an extremely narrow bandpass filter. 
By subtracting (2) from one, we have 
the extremely narrow bandpass filter 
written as

( ) ( )
( )

( )
.H z H z

C z
C z

1
1
1

BP N
a

= - =
+
-

(3)
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FIGURE 1. The magnitude responses of ( )C zn  with different poles’ radii of ( )C zn .

The task of a notch filter is 
to eliminate interference 
while preserving the target 
broadband signal.
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To see how ( )H zN  works, the pro-
posed feedback structure is applied to a 
conventional notch filter example. 
Consider the notch filter ( )zCn  given in 
(1) with .0 9t =  and then substitute it 
into ( )C z  in (2) and (3). The proposed 
notch filter and bandpass filter are 
given as 

( )
( )

( )
( )

H z
C
C

z
z

1
1

n
n

n

a

a
=

+
+

(4)

and

( )
( )

( )
.( )H z H

C z
C z

z1
1
1

n
n

n
b

a
= -

+
=

-
(5)

The frequency responses of several 
notch filters ( )H zn  and bandpass filters 

( )H zb  with various a  values are shown 
in Figure 2(b) and 2(c), respectively. For 
ease of comparison, we have included  
the original simple notch filter ( )C zn

with .0 9t =   in Figure 2(b).
From Figure 2(b) and (c), it is clear 

that the passband of the notch filter is 
nearly ideal, which implies that the 
stopband of the bandpass filter is 
almost zero. Moreover, the BW of 
both is extremely narrow. That is, the 
bandpass filter will tend to pass an 
extremely narrow band signal with 
frequencies in the neighborhood of 
~*  while the notch filter stops the 
signal with frequencies in the neigh-
borhood of ~*. Compared to [7],
which introduced that a narrow band-
pass filter could be obtained by con-
taining a notch filter in a feedback 
path, our proposed bandpass filter not 
only has an extremely narrow BW but 
also preserves the near unity gain as 
a  enlarges.
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20a = . (b) Zoomed portion.
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Influence of the feedback structure
The usage of the feedback structure is 
to make the notch filter have a more 
rapid tendency at the notch point. Here, 
we investigate the slope of the proposed 
notch filter. Consider a stable notch fil-
ter ( )C ~ , where the parameter z  is 
replaced by ~  using the relationship 
z e j= ~ . By differentiating (2), the dif-
ferential of the proposed notch filter is 
given as 

( )
[ ( )]

( )
( ),H

C
C

1
1

N 2~
a ~

a
~=

+

+
l l (6)

where ( )C ~l  represents the first-order 
differential of ( )C ~ . Let 0~  be the notch 
frequency. When 0~ ~= , both ( )C ~

and ( )HN ~  are equal to zero because 
they are at the notch point. Substituting 

0~ ~=  into (6), we obtain 

( ) ( ) ( ),H C1N 0 0~~ a= +l l (7)

which indicates the relationship between 
the slope of the proposed filter and the 
slope of the original filter. By careful 
observation of (7), when 0>a , their 
relationship can be expressed as 

| ( )| | ( )|.H C>N 0 0~ ~l l (8)

It is clear from (8) that the proposed 
notch filter outperforms the original one. 

We can also investigate the 3 dB-

points to prove the effectiveness of the 
feedback structure. When a filter is at a 

3 dB-  point, the magnitude of its 
transfer function is equal to /1 2 .
There are two 3 dB-  points in one fil-
ter. To avoid obscurity, let 3 dB-~  be the 
larger 3 dB-  frequency of the pro-
posed notch filter, and let 3 dB-~

*  be 
the larger 3 dB-  frequency of the 
original notch filter. It can be orga-
nized as follows

)|3dB-

| ( )|

| (
.

H

C

2
1

2
1

N 3dB~

~

=

=

-

*

Z

[

\

]]

]]
(9)

Note that 3 dB~-  is unnecessarily equal 
to 3 dB-~

* . To compare the 3 dB-  points 
between these two filters, we substitute 

3 dB~ ~= -  into (2), and the equation 
becomes

| ( )|
| ( )|

|( ) ( )|
H

C
C

1
1

N 3
3

3
dB

dB

dB
~

a ~

a ~
=

+

+
-

-

-

                
.

2
1=

(10)

If 0>a , (10) can be rearranged as

| ( )|
( )

,C
2 2 1

1
3 dB #~

a+ -
- (11)

which shows that

)| ( )| | | .C
2

1< *
3 3dB dB~ =- -(C ~ (12)

We obtain the relationship of 3 dB-

points, <3 3dB dB~ ~- -
* , from (12) be -

cause 3 dB~-  and 3 dB~-
*  are on the right 

side of the notch point. Since ( )HN ~  and 
( )C ~  are symmetric with respect to the 

notch point 0~ ~= , we can define the 
notch BW as

)~-

( )
(

,
BW
BW

2
2

H

C

3 0

3 0

dB

dB

N ~ ~

~

= -

=

-

-
*' (13)

where BWHN  and BWC  are the BW of 
( )HN ~  and ( )C ~ , respectively. With 

the relationship of 3 dB-  points 
between ( )HN ~  and ( )C ~ , the relation-
ship between BWHN  and BWC  is

.BW BW<H CN (14)

By investigating the slope and the 
3 dB-  points of the proposed notch 

filter, we clearly see 
how the feedback 
structure improves 
the performance. 
Both (7) and (11) 
give mathematical 
representations of 
the influence of the feedback structure. 
According to (8) and (14), if we choose 
a coefficient a  larger than zero, the 

proposed notch filter can perform bet-
ter than the original one. However, the 
larger the coefficient a  is, the longer 
the transient response is [8]. There is 
always a tradeoff between the transient 
response and the performance of a 
notch filter.

The pole of Hn(z)
The proposed feedback structure is suit-
able not only for the notch filter men-
tioned in (1) but also for any type of 
existing notch-like filter such as multiple 
notch filter [9] and comb filter [10]. For 
simplicity, take ( )C zn  and ( )H zn  as an 
example and illustrate why the method 
applied to any notch-like filter can 
improve the performance by deriving the 
pole of ( )H zn . Substitute ( )C zn  given in 
(1) into (4) and rearrange it as shown in 
(15) in the box at the bottom of the page.
To determine the pole radius, let the 
denominator part equal zero and then use 
the quadratic formula. See the box at the 
bottom of the page for (16). By observa-
tion and doing some calculations for the 
square root term, it can be proven that the 
square root term is negative. Therefore, 
the radius of the poles is simplified as 

.z
1

2 a

a

t +
=

+
(17)

Moreover, the inequality z 1< <t

would be automatically satisfied due 
to 0 1<# t  for stability. The larger a
is, the closer the pole will be to the 
unit circle. This inequality also 

implies that the pole 
of ( )H zn  is always 
closer to the unit 
circle than the one 
of ( )C zn  but never 
touches the unit cir-
cle, which always 

remains stable. It is illustrated in Fig-
ure 3, where we use different marks to 
distinguish the pole from ( )C zn  and 

The task of a notch filter
is to eliminate interference 
while preserving the  
target broadband signal. 

( )
( ) ( ) ( ) ( )

( ) ( ( ) )
cos

cos
H z

z z

z z

1 2
1 1 2

n 1 2 2

1 2

a a t ~ t a

a ~
=
+ - + + +

+ - +
- -

- -

*

*
(15)

           
( )

( ) ( ) ( ) ( ) ( ) ( )cos cos
z

2 1
2 4 4 12 2 2!

a

t a ~ t a ~ a t a
=

+

+ + - + +* *
(16)
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the pole from ( )H zn . It is clear that the 
transfer function with feedback struc-
ture always has a better performance 
than the one without it.

Conclusions
The simple notch filter suffers from two 
limitations. Its BW is not narrow enough, 
and the gain in the passband is not near 
one. We present a trick to improve the 
performance of a notch filter by using the 
feedback structure and show the proof 
and the pole-zero plot to illustrate it.  
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2016

JUNE

Eighth International Conference on Quality 
of Multimedia Experience (QoMEX)
6–8 June, Lisbon, Portugal. 
General Chair: Fernando Pereira
URL: http://qomex2016.lx.it.pt/

IEEE Second Conference on Network 
Softwarization (NetSoft 2016)
6–10 June, Seoul, South Korea. 
General Chair:  James Won-Ki Hong 
URL: http://sites.ieee.org/netsoft/

International Workshop on Content-Based 
Multimedia Indexing (CBMI)
15–17 June, Bucharest, Romania. 
General Chairs: Bogdan Ionescu 
and Henning Müller
URL: http://cbmi2016.upb.ro/

IEEE Workshop on Statistial 
Signal Processing (SSP)
26–29 June, Palma de Mallorca, Spain. 
General Chairs: Antonio Artés-Rodríguez 
and Joaquín Miguez
URL: http://ssp2016.tsc.uc3m.es/

JULY

IEEE Ninth IEEE Sensor Array 
and Multichannel Signal Processing 
Workshop (SAM)
10–13 July, Rio de Janeiro, Brazil. 
General Chairs: Rodrigo C. de Lamare 
and Martin Haardt 
URL: http://delamare.cetuc.puc-rio.br/sam2016/
index.html

IEEE 12th Image, Video, and 
Multidimensional Signal Processing 
Workshop (IVMSP)
11–12 July, Bordeaux, France. 
General Chair: Yannick Berthoumieu 
URL: http://ivmsp2016.org/

IEEE International Conference 
on Multimedia and Expo (ICME)
11–15 July, Seattle, Washington, USA. 
General Chairs: Tsuhan Chen, Ming-Ting Sun, 
and Cha Zhang
URL: http://www.icme2016.org/

AUGUST

IEEE 13th IEEE International Conference 
on Advanced Video and Signal 
Based Surveillance (AVSS)
23–26 August, Colorado Springs, 
Colorado, USA. 
General Cochairs: Terry Boult and Ram Nevatia  
URL: http://avss2016.org/

IEEE 24th European Signal Processing 
Conference (EUSIPCO)
29 August–2 September, Budapest, Hungary. 
General Chair: Lajos Hanzo  
URL: http://www.eusipco2016.org/

SEPTEMBER

IEEE International Workshop on Machine 
Learning for Signal Processing (MLSP)
13–16 September, Salerno, Italy.  

IEEE International 18th 
International Workshop 
on Multimedia Signal Processing (MMSP)
20–23 September, Montreal, Quebec, Canada.

Sensor Signal Processing for Defence (SSPD)
22–23 September, Edinburgh, Great Britain. 
URL: http://www.sspd.eng.ed.ac.uk

IEEE International Conference 
on Image Processing (ICIP)
25–28 September, Phoenix, Arizona, USA. 
General Chair: Lina Karam 
URL: http://www.ieeeicip2016.org

NOVEMBER

50th Annual Asilomar Conference 
on Signals, Systems, and Computers 
(ASILOMAR)
6–9 November, Pacific Grove, California, USA.
General Chair: Philip Schniter
URL: http://www.asilomarsscconf.org/

DECEMBER

Picture Coding Symposium (PCS) 
4–7 December, Nuremberg, Germany.

Eighth IEEE International Workshop on 
Information Forensics and Security (WIFS) 
5–7 December, Abu Dhabi, UAE.
General Chairs: Ernesto Damiani 
and Nasir Memon 
URL: http://wifs2016.mdabaie.com/

IEEE Global Conference on Signal 
and Information Processing (GlobalSIP)
7–9 December, Greater Washington, D.C., USA.
General Chairs:  Zhi Tian and Brian Sadler
URL: http://2016.ieeeglobalsip.org 

17th IEEE International Workshop on 
Computational Advances in Multisensor 
Adaptive Processing (CAMSAP)
10–13 December, Curacao, Dutch Antilles.
General Chairs: André L.F. de Almeida 
and Martin Haardt
URL: http://www.cs.huji.ac.il/conferences/
CAMSAP17/ 

IEEE Spoken Language 
Technology Workshop (SLT) 
13–16 December, San Juan, Puerto Rico.

Asia-Pacific Signal and Information 
Processing Association Annual Summit 
and Conference (APSIPA ASC) 
13–16 December, Jeju, South Korea.

2017

MARCH

2017 IEEE International Conference 
on Acoustics, Speech and 
Signal Processing (ICASSP)
5–9 March, New Orleans, Louisiana, USA.

SP

Digital Object Identifier 10.1109/MSP.2016.2531038
Date of publication: 27 April 2016
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ICME 2016 will be held at the Westin Seattle, 
Seattle, Washington, United States, 
11–15 July 2016. 

Please send calendar submissions to: 
Dates Ahead, Attention: Jessica Barragué 

E-mail: j.barrague@ieee.org

DATES AHEADDATES AHEAD
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General Chairs
Zhi Tian

George Mason Univ.

Brian M. Sadler

Army Research Lab.

Technical Program 
Chairs
Philip Regalia 

Catholic Univ. of America

Trac D. Tran 

Johns Hopkins Univ.

Brian Mark

George Mason Univ.

Finance Chair
Jill Nelson

George Mason Univ.

Local Arrangement Chair
Nathalia Peixoto

George Mason Univ.

Publications Chair
Kathleen Wage

George Mason Univ.

Publicity Chairs
Piya Pal

Univ. MD, College Park

Seung-Jun Kim

Univ. MD, Baltimore Cty

Technical Workshop 
Liaison Chair
Min Wu

Univ. MD, College Park

Government Panel Chair
Joel Goodman

Naval Research Lab

Industrial Liaison Chairs
Kristine Bell

Metron Inc.

Hang Liu

Catholic Univ. 

International Liaison 
Chairs
Chengyang Yang

BUAA, China

Mounir Ghogho

Univ. of Leeds, UK

Advisory Committee
Monson Hayes

George Mason Univ.

Call for Papers
The fourth IEEE Global Conference on Signal and Information Processing (GlobalSIP) will be held
in Washington, DC, USA on December 7–9, 2016. GlobalSIP has rapidly assumed flagship status
within the IEEE Signal Processing Society. It focuses broadly on signal and information processing
with an emphasis on up-and-coming signal processing themes. The conference features
world-class plenary speeches and overview talks, tutorials, exhibits, oral and poster sessions,
and government panel discussions on emerging topics and funding opportunities in Signal and
Information Processing. GlobalSIP2016 is comprised of co-located symposia selected based on
responses to the Call for Symposium Proposals. Featured symposia include:

General symposium
Compressed sensing and deep learning
Signal processing of big data
Signal and information processing over 
networks
Distributed optimization and resource 
management over networks
Signal processing and transceiver design for 
5G networks
Secure communication, authentication and 
privacy

Cognitive communications and Radar
Big data analytics in medical imaging
Signal processing for understanding crowd 
dynamics
Signal and information processing for smart 
grid infrastructure
Non-commutative theory and applications
Sparse signal processing for communications
Autonomous systems
ESPA: (industrial) emerging signal processing 
applications

June 5, 2016 : Paper Submission Due
August 5, 2016 : Final Acceptance decisions notifications sent to all authors
September 5, 2016 : Camera-ready papers due

Prospective authors are invited to submit full-length papers, with up to four pages for technical 
content including figures and possibly references, and with one additional optional 5th page 
containing only references. Manuscripts should be original (not submitted/published elsewhere) 
and written in accordance with the standard IEEE double-column paper template.

Conference Highlights

14 technical symposia with plenary talks and keynotes overviewing emerging topics in SIP
Government panel discussions on funding opportunities, trends and targeted topics
New industrial symposium on emerging SP applications with demos and exhibitions
Great venue with vibrant cultural, educational, and scientific identity, housing museums 
(many are free), monuments, art centers, universities, and federal agencies

Opportunity to attend both GlobalSIP and Globecom(Dec 4-6, 2016)  in one trip

Important Dates:

http://2016.ieeeglobalsip.org/

Fourth IEEE Global Conference on Signal 
and Information Processing
December 7–9, 2016, Greater Washington D.C., USA

Digital Object Identifier 10.1109/MSP.2016.2548581 
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The language of technical computing

Over one million people around 
the world speak MATLAB. 
Engineers and scientists in every field
from aerospace and semiconductors 
to biotech, financial services, and 
earth and ocean sciences use it 
to express their ideas. 
Do you speak MATLAB?

Cells in mitosis:  
high-throughput microscopy
for image-based screens.
Provided by Roy Wollman,
Univ. California, Davis.

Article available at 
mathworks.com/ltc

©
2012 The M

athW
orks, Inc.
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ContentGazette
I E E E  S I G N A L  P R O C E S S I N G  S O C I E T Y

N A Y  2 0 1 6  I S S N  2 1 6 7 - 5 0 2 3

IEEE Journal of Selected Topics in Signal Processing
http://www.signalprocessingsociety.org/publications/periodicals/jstsp/

IEEE Signal Processing Letters
http://www.signalprocessingsociety.org/publications/periodicals/letters/

IEEE Signal Processing Magazine
http://www.signalprocessingsociety.org/publications/periodicals/spm/

IEEE/ACM Transactions on Audio, Speech, and Language Processing
http://www.signalprocessingsociety.org/publications/periodicals/taslp/

IEEE Transactions on Image Processing
http://www.signalprocessingsociety.org/publications/periodicals/image-processing/

IEEE Transactions on Information Forensics and Security
http://www.signalprocessingsociety.org/publications/periodicals/forensics/

IEEE Transactions on Signal Processing
http://www.signalprocessingsociety.org/publications/periodicals/tsp/

IEEE Transactions on Multimedia
http://www.signalprocessingsociety.org/tmm/
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APRIL 15, 2016 VOLUME 64 NUMBER 8 ITPRED (ISSN 1053-587X)

REGULAR PAPERS

Löwner-Based Blind Signal Separation of Rational Functions With Applications http://dx.doi.org/10.1109/TSP.2015.2500179 . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O. Debals, M. Van Barel, and L. De Lathauwer 1909

On the Achievable Rate of OFDM With Index Modulation http://dx.doi.org/10.1109/TSP.2015.2500880 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Wen, X. Cheng, M. Ma, B. Jiao, and H. V. Poor 1919

The Role of Principal Angles in Subspace Classification http://dx.doi.org/10.1109/TSP.2015.2500889 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Huang, Q. Qiu, and R. Calderbank 1933

A Fast Hyperplane-Based Minimum-Volume Enclosing Simplex Algorithm for Blind Hyperspectral Unmixing

http://dx.doi.org/10.1109/TSP.2015.2508778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.-H. Lin, C.-Y. Chi, Y.-H. Wang, and T.-H. Chan 1946

Distributed Bayesian Estimation of Linear Models With Unknown Observation Covariances http://dx.doi.org/10.1109/TSP.2015.2488581 . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Wang and P. M. Djurić 1962

Consensus Algorithms With State-Dependent Weights http://dx.doi.org/10.1109/TSP.2016.2515074 . . . . . . . . .. . . . . . . . . O. Slučiak and M. Rupp 1972

Low-Complexity Algorithms for Low Rank Clutter Parameters Estimation in Radar Systems http://dx.doi.org/10.1109/TSP.2015.2512535 . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Sun, A. Breloy, P. Babu, D. P. Palomar, F. Pascal, and G. Ginolhac 1986

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

__________________________

http://www.signalprocessingsociety.org
http://dx.doi.org/10.1109/TSP.2015.2500179
http://dx.doi.org/10.1109/TSP.2015.2500880
http://dx.doi.org/10.1109/TSP.2015.2500889
http://dx.doi.org/10.1109/TSP.2015.2508778
http://dx.doi.org/10.1109/TSP.2015.2488581
http://dx.doi.org/10.1109/TSP.2016.2515074
http://dx.doi.org/10.1109/TSP.2015.2512535
http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


                                                                          www.signalprocessingsociety.org     [2]  MAY 2016

Phase Noise Estimation in OFDM: Utilizing Its Associated Spectral Geometry http://dx.doi.org/10.1109/TSP.2015.2512532 . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Mathecken, T. Riihonen, S. Werner, and R. Wichman 1999

Joint Community and Anomaly Tracking in Dynamic Networks http://dx.doi.org/10.1109/TSP.2015.2510971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Baingana and G. B. Giannakis 2013

Recursive Sparse Point Process Regression With Application to Spectrotemporal Receptive Field Plasticity Analysis

http://dx.doi.org/10.1109/TSP.2015.2512560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Sheikhattar, J. B. Fritz, S. A. Shamma, and B. Babadi 2026

Statistical Analysis of Interference for Nanoscale Electromechanical Wireless Communication at VHF-Band

http://dx.doi.org/10.1109/TSP.2015.2512526 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. J. Lehtomäki, A. O. Bicen, and I. F. Akyildiz 2040

Sequence Design to Minimize the Weighted Integrated and Peak Sidelobe Levels http://dx.doi.org/10.1109/TSP.2015.2510982 . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Song, P. Babu, and D. P. Palomar 2051

Improving Radio Energy Harvesting in Robots Using Mobility Diversity http://dx.doi.org/10.1109/TSP.2016.2518999 . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Bonilla Licea, S. A. Raza Zaidi, D. McLernon, and M. Ghogho 2065

Generalized Cramér–Rao Bound for Joint Estimation of Target Position and Velocity for Active and Passive Radar

Networks http://dx.doi.org/10.1109/TSP.2015.2510978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. He, J. Hu, R. S. Blum, and Y. Wu 2078

Unitary Beamformer Designs for MIMO Interference Broadcast Channels http://dx.doi.org/10.1109/TSP.2015.2508782 . . . . . . . S. M. Razavi 2090

Algebraic Phase Unwrapping Based on Two-Dimensional Spline Smoothing Over Triangles http://dx.doi.org/10.1109/TSP.2015.2510986 . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Kitahara and I. Yamada 2103

A Multiscale Pyramid Transform for Graph Signals http://dx.doi.org/10.1109/TSP.2015.2512529 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. I Shuman, M. J. Faraji, and P. Vandergheynst 2119

Average SINR Calculation of a Persymmetric Sample Matrix Inversion Beamformer http://dx.doi.org/10.1109/TSP.2015.2512527 . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Liu, W. Liu, H. Liu, B. Chen, X.-G. Xia, and F. Dai 2135

Closed-Loop Compressive CSIT Estimation in FDD Massive MIMO Systems With 1 Bit Feedback

http://dx.doi.org/10.1109/TSP.2016.2515070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. K. N. Lau, S. Cai, and A. Liu 2146

Adaptive Radar Detection of a Subspace Signal Embedded in Subspace Structured Plus Gaussian Interference Via

Invariance http://dx.doi.org/10.1109/TSP.2015.2507544 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. De Maio and D. Orlando 2156

Dual-Function Radar-Communications: Information Embedding Using Sidelobe Control and Waveform Diversity

http://dx.doi.org/ TSP.201 .2505667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad 2168

EDICS—Editors’ Information Classification Scheme http://dx.doi.org/10.1109/TSP.2016.2543942 . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 2182
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Adaptation, Detection, Estimation, and Learning 
Distributed detection and estimation 
Distributed adaptation over networks
Distributed learning over networks
Distributed target tracking 
Bayesian learning; Bayesian signal processing
Sequential learning over networks 
Decision making over networks 
Distributed dictionary learning 
Distributed game theoretic strategies
Distributed information processing 

Consensus over network systems 
Optimization over network systems 

Communications, Networking, and Sensing 
Distributed monitoring and sensing 
Signal processing for distributed communications and 

Signal processing for cooperative networking 
Signal processing for network security 
Optimal network signal processing and resource 

Performance and bounds of methods
Robustness and vulnerability
Network modeling and identification

Modeling and Analysis (cont.)
Simulations of networked information processing 
systems
Social learning  
Bio-inspired network signal processing 
Epidemics and diffusion in populations

Imaging and Media Applications 
Image and video processing over networks 
Media cloud computing and communication 
Multimedia streaming and transport 
Social media computing and networking 
Signal processing for cyber-physical systems 
Wireless/mobile multimedia 

Data Analysis 
Processing, analysis, and visualization of big data 
Signal and information processing for crowd 
computing 
Signal and information processing for the Internet of 
Things 
Emergence of behavior 

Emerging topics and applications 
Emerging topics 
Applications in life sciences, ecology, energy, social 
networks, economic networks, finance, social 
sciences, smart grids, wireless health, robotics, 
transportation, and other areas of science and 
engineering 

SIGNAL AND INFORMATION PROCESSING 
OVER NETWORKS

IEEE TRANSACTIONS ON

The new publishes high-quality papers 
that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to 
processing of signals and information (data) defined over networks, potentially dynamically varying. In signal 
processing over networks, the topology of the network may define structural relationships in the data, or 
may constrain processing of the data. Topics of interest include, but are not limited to the following:

Editor-in-
-ieee 

Now accepting paper submissions

Graphical and kernel methods 

networking

allocation 
Modeling and Analysis 
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Over the past few decades, online social networks such as  and  have significantly changed the way 
people communicate and share information with each other. The opinion and behavior of each individual are heavily 
influenced through interacting with others. These local interactions lead to many interesting collective phenomena 
such as herding, consensus, and rumor spreading. At the same time, there is always the danger of mob mentality of 
following crowds, celebrities, or gurus who might provide misleading or even malicious information. Many efforts 
have been devoted to investigating the collective behavior in the context of various network topologies and the 
robustness of social networks in the presence of malicious threats. On the other hand, activities in social networks 
(clicks, searches, transactions, posts, and tweets) generate a massive amount of decentralized data, which is not only 
big in size but also complex in terms of its structure. Processing these data requires significant advances in accurate 
mathematical modeling and computationally efficient algorithm design. 
Many modern technological systems such as wireless sensor and robot networks are virtually the same as social 
networks in the sense that the nodes in both networks carry disparate information and communicate with constraints. 
Thus, investigating social networks will bring insightful principles on the system and algorithmic designs of many 
engineering networks. An example of such is the implementation of consensus algorithms for coordination and 
control in robot networks. Additionally, more and more research projects nowadays are data-driven. Social networks 
are natural sources of massive and diverse big data, which present unique opportunities and challenges to further 
develop theoretical data processing toolsets and investigate novel applications. This special issue aims to focus on 
addressing distributed information (signal, data, etc.) processing problems in social networks and also invites 
submissions from all other related disciplines to present comprehensive and diverse perspectives. 
Topics of interest include, but are not limited to: 

Dynamic social networks: time varying network topology, edge weights, etc. 
Social learning, distributed decision-making, estimation, and filtering 
Consensus and coordination in multi-agent networks 
Modeling and inference for information diffusion and rumor spreading 
Multi-layered social networks where social interactions take place at different scales or modalities 
Resource allocation, optimization, and control in multi-agent networks 
Modeling and strategic considerations for malicious behavior in networks 
Social media computing and networking 
Data mining, machine learning, and statistical inference frameworks and algorithms for handling big data 
from social networks 
Data-driven applications: attribution models for marketing and advertising, trend prediction, 
recommendation systems, crowdsourcing, etc. 
Other topics associated with social networks: graphical modeling, trust, privacy, engineering applications, 
etc. 

Manuscript submission due: September 15, 2016
First review completed: November 1, 2016 
Revised manuscript due: December 15, 2016 
Second review completed:  February 1, 2017 
Final manuscript due: March 15, 2017 
Publication: June 1, 2017 

Zhenliang Zhang, Qualcomm Corporate R&D (zhenlian@qti.qualcomm.com)
Wee Peng Tay, Nanyang Technological University (wptay@ntu.edu.sg)
Moez Draief, Imperial College London (m.draief@imperial.ac.uk)
Xiaodong Wang, Columbia University (xw2008@columbia.edu)
Edwin K. P. Chong, Colorado State University (edwin.chong@colostate.edu)
Alfred O. Hero III, University of Michigan (hero@eecs.umich.edu)
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APRIL 2016 VOLUME 24 NUMBER 04 ITASFA (ISSN 2329-9290)

REGULAR PAPERS

Joint Argument Inference in Chinese Event Extraction with Argument Consistency and Event Relevance
http://dx.doi.org/10.1109/TASLP.2015.2497148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Li and G. Zhou 612

Proportionate Adaptive Filtering for Block-Sparse System Identification http://dx.doi.org/10.1109/TASLP.2015.2499602 . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Liu and S. L. Grant 623

Noise Reduction with Optimal Variable Span Linear Filters http://dx.doi.org/10.1109/TASLP.2015.2505416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. R. Jensen, J. Benesty, and M. G. Christensen 631

Enhancement and Noise Statistics Estimation for Non-Stationary Voiced Speech http://dx.doi.org/10.1109/TASLP.2016.2514492 . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. M. Nørholm, J. R. Jensen, and M. G. Christensen 645

Relationships Between Vocal Function Measures Derived from an Acoustic Microphone and a Subglottal Neck-Surface
Accelerometer http://dx.doi.org/10.1109/TASLP.2016.2516647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. D. Mehta, J. H. Van Stan, and R. E. Hillman 659

Unsupervised Word Segmentation and Lexicon Discovery Using Acoustic Word Embeddings
http://dx.doi.org/10.1109/TASLP.2016.2517567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Kamper, A. Jansen, and S. Goldwater 669
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Joint Dereverberation and Noise Reduction Based on Acoustic Multi-Channel Equalization http://dx.doi.org/10.1109/TASLP.2016.2518804 . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Kodrasi and S. Doclo 680

Deep Sentence Embedding Using Long Short-Term Memory Networks: Analysis and Application to Information
Retrieval http://dx.doi.org/10.1109/TASLP.2016.2520371 . . . . . . H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, and R. Ward 694

Theory and Perceptual Evaluation of the Binaural Reproduction and Beamforming Tradeoff in the Generalized Spherical
Array Beamformer http://dx.doi.org/10.1109/TASLP.2016.2522649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Jeffet, N. R. Shabtai, and B. Rafaely 708

A Single-Channel Non-Intrusive C50 Estimator Correlated With Speech Recognition Performance
http://dx.doi.org/10.1109/TASLP.2016.2521486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Peso Parada, D. Sharma, J. Lainez, D. Barreda, T. van Waterschoot, and P. A. Naylor 719

Exploiting Turn-Taking Temporal Evolution for Personality Trait Perception in Dyadic Conversations
http://dx.doi.org/10.1109/TASLP.2016.2531286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M.-H. Su, C.-H. Wu, and Y.-T. Zheng 733
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http://dx.doi.org/10.1109/TASLP.2016.2517318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Abdul-Rauf, H. Schwenk, P. Lambert, and M. Nawaz 745
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Takamichi, T. Toda, A. W. Black, G. Neubig, S. Sakti, and S. Nakamura 755
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CALL FOR PAPERS
IEEE/ACM Transactions on Audio, Speech and Language Processing 

Special issue on Sound Scene and Event Analysis

It is still difficult for a machine listening system to demonstrate the same capabilities as human
listeners in the analysis of realistic acoustic scenes. Besides speech and music, the analysis of other
types of sounds, generally referred to as environmental sounds, is the subject of growing interest 
from the community and is targeting an ever increasing set of audio categories. In realistic 
environments, multiple sources are often present simultaneously, and in reverberant conditions, 
which makes the computational scene analysis challenging.

Typical tasks on audio scene analysis are audio-based scene classification and audio event detection 
and recognition targeting categories such as “door knocks”, “gunshots”, “crowds”, “car engine
noise”, as well as marine mammal and bird species, etc. The wide heterogeneity of possible sounds
means that novel types of signal processing and machine learning methods should be developed 
including novel concepts for audio source segmentation and separation. Beyond recognizing sound
scenes and sources of interest, a key task of complex audio scene analysis is sound-source 
localization.

Further, most of the methods developed until now are probably not tractable on big data so there is 
also a need for new approaches that are, by design, efficient on large scale problems. Acquiring large
scale labelled databases is still problematic and such datasets are most likely collected on
heterogeneous sets of acoustic conditions (mobile phone recordings, urban/domestic audio,…) most 
of which are usually offering a degraded version of the signal of interest with potential variable 
annotation strategies. Therefore methods to tackle large scale problems also have to be robust against 
signal degradation, acoustic variability, and annotation variability.

We invite papers on various topics on Sound Scene and Event Analysis, including but not limited to :

* Audio scene classification; * Big data in environmental audio;
* Sound event detection and classification                    * Environmental sound recognition;
* Large-scale environmental audio data sets; * Computational auditory scene analysis;
* Acoustic features for environmental sound analysis;
* Source localization methods for environmental audio scene analysis
* Source separation for environmental audio scene analysis

The authors are required to follow the Author’s Guide for manuscript submission to the IEEE
/ACM Transactions on Audio, Speech, and Language Processing at
http://www.signalprocessingsociety.org/publications/periodicals/taslp/

Important Dates:
Manuscript submission due: July 1st, 2016
First review completed: Sept. 30th 2016 
Revised manuscript due: October 20th, 2016 
Second review completed: Dec. 1st, 2016
Final manuscript due: Dec. 31st, 2016
Publication date: February 2017

Guest Editors:
Gaël Richard, Télécom ParisTech, France (lead guest editor) 
Tuomas Virtanen, Tampere University of Technology, Finland 
Juan Pablo Bello, New York University, USA
Nobutaka Ono, National Institute of Informatics, Japan
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APRIL 2016 VOLUME 25 NUMBER 4 IIPRE4 (ISSN 1057-7149)

PAPERS

Framelet-Based Sparse Unmixing of Hyperspectral Images http://dx.doi.org/10.1109/TIP.2016.2523345 . . . . . . G. Zhang, Y. Xu, and F. Fang 1516
Fourier Spectral Filter Array for Optimal Multispectral Imaging http://dx.doi.org/10.1109/TIP.2016.2523683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Jia, K. J. Barnard, and K. Hirakawa 1530
Blind Super Resolution of Real-Life Video Sequences http://dx.doi.org/10.1109/TIP.2016.2523344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Faramarzi, D. Rajan, F. C. A. Fernandes, and M. P. Christensen 1544
The Semi-Variogram and Spectral Distortion Measures for Image Texture Retrieval http://dx.doi.org/10.1109/TIP.2016.2526902 . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. D. Pham 1556
Learning a Combined Model of Visual Saliency for Fixation Prediction http://dx.doi.org/10.1109/TIP.2016.2522380 . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Wang, A. Borji, C.-C. J. Kuo, and L. Itti 1566
Regularization Strategies for Discontinuity-Preserving Optical Flow Methods http://dx.doi.org/10.1109/TIP.2016.2526903 . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Monzón, A. Salgado, and J. Sánchez 1580
Dense and Sparse Reconstruction Error Based Saliency Descriptor http://dx.doi.org/10.1109/TIP.2016.2524198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Lu, X. Li, L. Zhang, X. Ruan, and M.-H. Yang 1592
Texture Classification Using Dense Micro-Block Difference http://dx.doi.org/10.1109/TIP.2016.2526898 . . . . . . R. Mehta and K. Egiazarian 1604
Effective Five Directional Partial Derivatives-Based Image Smoothing and a Parallel Structure Design
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IEEE TRANSACTIONS ON

The IEEE Transactions on Computational Imaging 
publishes research results where computation plays 
an integral role in the image formation process. All areas 
of computational imaging are appropriate, ranging from 
the principles and theory of computational imaging, to mod-
eling paradigms for computational imaging, to image for-
mation methods, to the latest innovative computational imaging system 
designs. Topics of interest include, but are not limited to the following:

Computational Imaging Methods and  
Models

Coded image sensing
Compressed sensing
Sparse and low-rank models
Learning-based models, dictionary methods
Graphical image models
Perceptual models

Computational Image Formation

Sparsity-based reconstruction
Statistically-based inversion methods
Multi-image and sensor fusion
Optimization-based methods; proximal itera-
tive methods, ADMM

Computational Photography

Non-classical image capture
Generalized illumination
Time-of-flight imaging
High dynamic range imaging
Plenoptic imaging

Computational Consumer 
Imaging

Mobile imaging, cell phone imaging
Camera-array systems
Depth cameras, multi-focus imaging
Pervasive imaging, camera networks

Computational Acoustic Imaging

Multi-static ultrasound imaging
Photo-acoustic imaging
Acoustic tomography

Computational Microscopy

Holographic microscopy
Quantitative phase imaging
Multi-illumination microscopy
Lensless microscopy
Light field microscopy

Imaging Hardware and Software

Embedded computing systems
Big data computational imaging
Integrated hardware/digital design

Tomographic Imaging

X-ray CT
PET
SPECT

Magnetic Resonance Imaging

Diffusion tensor imaging
Fast acquisition

Radar Imaging

Synthetic aperture imaging
Inverse synthetic aperture imaging

Geophysical Imaging

Multi-spectral imaging
Ground penetrating radar
Seismic tomography

Multi-spectral Imaging

Multi-spectral imaging
Hyper-spectral imaging
Spectroscopic imaging

For more information on the IEEE Transactions on Computational Imaging see

W. Clem Karl
Boston University
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A complementary set of tutorial overview and survey 
articles demonstrating the importance of incorporat-
ing signal processing strategies into the advances in 
neuroimaging techniques, data analytics, and mod-
eling for brain function is presented in this issue of 
IEEE Signal Processing Magazine. This cluster of 
feature articles showcases the inherently interdisci-
plinary nature of brain mapping research and the 
intriguing signal processing questions.
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CALL FOR PAPERS AND PROPOSALS
IEEE World Forum on Internet of Things 20
6-8 March, 2014 – Seoul, South Korea

CALL FOR PAPERS AND PROPOSALS
2016 IEEE 3rd World Forum on Internet of Things (WF-IoT)

12-14 December 2016 — Reston, USA
http://sites.ieee.org/wf-iot-2016/

IoT: Smart Innovation  

for Vibrant Ecosystems 
The 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT) seeks contributions on how to nurture 
and cultivate IoT technologies and applications for the benefit of society. Original papers are solicited in, 
but are not limited to, the following topics: 
IoT Enabling Technologies 

5G Networks and IoT 
Software Defined Network (SDN) and IoT
Sensor and Actuator Networks 
Ultra-low power IoT Technologies and Embedded Systems Architectures 
Wearables, Body Sensor Networks, Smart Portable Devices 
Design Space Exploration Techniques for IoT Devices and Systems 
Heterogeneous Networks, Web of Things, Web of Everything 
IoT Protocols (IPv6, 6LoWPAN, RPL, 6TiSCH, W3C) 
Internet of Nano Things 
Sensors Data Management, IoT Mining and Analytics 
Adaptive Systems and Models at Runtime 
Distributed Storage, Data Fusion 
Routing and Control Protocols 
Resource Management, Access Control 
Mobility, Localization and Management Aspects 
Identity Management and Object Recognition 
Localization Technologies 
Edge Computing, Fog Computing and IoT 
Machine to Machine (M2M)/Devices-to-Devices communications and IoT

IoT Application and Services 
Cyber-physical systems, Context Awareness, Situation Awareness, Ambient Intelligence 
Collaborative Applications and Systems 
Service Experiences and Analysis 
Smart Cities, Smart Public Places, Smart Home/Building Automation 
e-Health, e-Wellness, Automotive, Intelligent Transport 
Smart Grid, Energy Management 
Consumer Electronics, Assisted Living, Rural Services and Production 
Industrial IoT Service Creation and Management Aspects 
Crowd-sensing, human centric sensing 
Big data and IoT Data Analytics 
Internet Applications Naming and Identifiers 
Semantic Technologies, Collective Intelligence 
Cognitive and Reasoning about Things and Smart Objects 
Mobile Cloud Computing (MCC) and IoT
IoT Multimedia

IoT Societal Impacts 
Human Role in the IoT, Social Aspects and Services 
Value Chain Analysis and Evolution Aspects 
New Human-Device Interactions for IoT, Do-It-Yourself 
Social Models and Networks 
Green IoT: Sustainable Design and Technologies 
Urban Dynamics and crowdsourcing services 
Metrics, Measurements, and Evaluation of IoT Sustainability and ROI 
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The Sixth IEEE Workshop on Spoken Language Technology (SLT) will be 
held from December 13–16, 2016 in San Juan, Puerto Rico.  The theme for 
this year will be “machine learning from signal to concepts”.  The workshop is 
expected to provide researchers around the world the opportunity to interact 
and present their newest and most advanced research in the fields of speech 
and language processing. The program for SLT 2016 will be include oral and 
posters sessions, keynotes, plus invited speakers in the field of spoken language 
as well as tutorials and multiple special sessions.

Topics
Submission of papers is desired on a large variety of areas of spoken language 
technology, with emphasis on the following topics on previous workshops:

Speech recognition and synthesis
Spoken language understanding
Spoken document retrieval
Question answering from speech
Assistive technologies
Natural language processing
Educational and healthcare 
applications

Human/computer interaction
Spoken dialog systems
Speech data mining
Spoken document summarization
Spoken language databases
Speaker/language recognition
Multimodal processing

Venue
IEEE SLT 2016 will take place in San Juan, Puerto Rico at the InterContinental 
Hotel in the tourist area of Isla Verde. These areas feature beautiful beaches 
and a vibrant night life besides a large number of dining options. Additional, the 
Old San Juan area is just a few miles away. Additional details about SLT 2016 
can be found at: www.slt2016.org

Important Dates
Special Session Proposals: June 8, 2016
Paper Submission: July 22, 2016
Notification of Review Results: September 14, 2016
Demo Submission: September 16, 2016
Early Registration Deadline: October 14, 2016
Workshop: December 13–16, 2016

Submission Details
Authors are invited to prepare a full-length manuscript of 4-6 pages, including 
reference materials and figures, to the SLT 2016 website: www.slt2016.org

2016 IEEE Workshop on Spoken Language Technology

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.slt2016.org
http://www.slt2016.org
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


                                                                          www.signalprocessingsociety.org     [24]  MAY 2016

General Chairs
Zhi Tian

George Mason Univ.

Brian M. Sadler

Army Research Lab.

Technical Program 
Chairs
Philip Regalia 

Catholic Univ. of America

Trac D. Tran 

Johns Hopkins Univ.

Brian Mark

George Mason Univ.

Finance Chair
Jill Nelson

George Mason Univ.

Local Arrangement Chair
Nathalia Peixoto

George Mason Univ.

Publications Chair
Kathleen Wage

George Mason Univ.

Publicity Chairs
Piya Pal

Univ. MD, College Park

Seung-Jun Kim

Univ. MD, Baltimore Cty

Technical Workshop 
Liaison Chair
Min Wu

Univ. MD, College Park

Government Panel Chair
Joel Goodman

Naval Research Lab

Industrial Liaison Chairs
Kristine Bell

Metron Inc.

Hang Liu

Catholic Univ. 

International Liaison 
Chairs
Chengyang Yang

BUAA, China

Mounir Ghogho

Univ. of Leeds, UK

Advisory Committee
Monson Hayes

George Mason Univ.

Call for Papers
The fourth IEEE Global Conference on Signal and Information Processing (GlobalSIP) will be held
in Washington, DC, USA on December 7–9, 2016. GlobalSIP has rapidly assumed flagship status
within the IEEE Signal Processing Society. It focuses broadly on signal and information processing
with an emphasis on up-and-coming signal processing themes. The conference features
world-class plenary speeches and overview talks, tutorials, exhibits, oral and poster sessions,
and government panel discussions on emerging topics and funding opportunities in Signal and
Information Processing. GlobalSIP2016 is comprised of co-located symposia selected based on
responses to the Call for Symposium Proposals. Featured symposia include:

General symposium
Compressed sensing and deep learning
Signal processing of big data
Signal and information processing over 
networks
Distributed optimization and resource 
management over networks
Signal processing and transceiver design for 
5G networks
Secure communication, authentication and 
privacy

Cognitive communications and Radar
Big data analytics in neuro-imaging
Signal processing for understanding crowd 
dynamics
Signal and information processing for smart 
grid infrastructure
Non-commutative theory and applications
Sparse signal processing for communications
Autonomous systems
Emerging signal processing applications

June 5, 2016 : Paper Submission Due
August 5, 2016 : Final Acceptance decisions notifications sent to all authors
September 5, 2016 : Camera-ready papers due

Prospective authors are invited to submit full-length papers, with up to four pages for technical 
content including figures and possibly references, and with one additional optional 5th page 
containing only references. Manuscripts should be original (not submitted/published elsewhere) 
and written in accordance with the standard IEEE double-column paper template.

Conference Highlights

14 technical symposia with plenary talks and keynotes overviewing emerging topics in SIP
Government panel discussions on funding opportunities, trends and targeted topics
New industrial symposium on emerging SP applications with demos and exhibitions
Great venue with vibrant cultural, educational, and scientific identity, housing museums 
(many are free), monuments, art centers, universities, and federal agencies

Opportunity to attend both GlobalSIPand Globecom(Dec 4-6, 2016)  in one trip

Important Dates:

http://2016.ieeeglobalsip.org/

Fourth IEEE Global Conference on Signal 
and Information Processing
December 7–9, 2016, Greater Washington D.C., USA
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Please PRINT your name as you want it to appear on your membership card and IEEE 
correspondence. As a key identifier for the IEEE database, circle your last/surname.

PERSONAL INFORMATION

To better serve our members and supplement member dues, your postal mailing address is made available to 
carefully selected organizations to provide you with information on technical services, continuing education, and 
conferences. Your e-mail address is not rented by IEEE. Please check box only if you do not want to receive these 
postal mailings to the selected address. 

Start your membership immediately: Join online www.ieee.org/join

Name & Contact Information1

I have graduated from a three- to five-year academic program with a university-level degree.    
 Yes      No

This program is in one of the following fields of study:
Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

This academic institution or program is accredited in the country where the institution 
is located.     Yes      No      Do not know

I have ______ years of professional experience in teaching, creating, developing, 
practicing, or managing within the following field:

Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

Attestation2

I hereby apply for IEEE membership and agree to be governed by the 
IEEE Constitution, Bylaws, and Code of Ethics. I understand that IEEE 
will communicate with me regarding my individual membership and all 
related benefits. Application must be signed.

Signature Date

Please Sign Your Application4

3 Please Tell Us About Yourself

 Male  Female           Date of birth (Day/Month/Year) /     /

Please complete both sides of this form, typing or printing in capital letters.
Use only English characters and abbreviate only if more than 40 characters and 
spaces per line. We regret that incomplete applications cannot be processed.

(students and graduate students must apply online)

A. Primary line of business
1. Computers
2. Computer peripheral equipment
3. Software
4. Office and business machines
5. Test, measurement and instrumentation equipment
6. Communications systems and equipment
7. Navigation and guidance systems and equipment
8. Consumer electronics/appliances
9. Industrial equipment, controls and systems

10. ICs and microprocessors
11. Semiconductors, components, sub-assemblies, materials and supplies
12. Aircraft, missiles, space and ground support equipment
13. Oceanography and support equipment
14. Medical electronic equipment
15. OEM incorporating electronics in their end product (not elsewhere classified)
16. Independent and university research, test and design laboratories and

consultants (not connected with a mfg. co.)
17. Government agencies and armed forces
18. Companies using and/or incorporating any electronic products in their

manufacturing, processing, research or development activities
19. Telecommunications services, telephone (including cellular)
20. Broadcast services (TV, cable, radio)
21. Transportation services (airline, railroad, etc.)
22. Computer and communications and data processing services
23. Power production, generation, transmission and distribution
24. Other commercial users of electrical, electronic equipment and services

(not elsewhere classified)
25. Distributor (reseller, wholesaler, retailer)
26. University, college/other educational institutions, libraries
27. Retired
28. Other__________________________

Over Please

B. Principal job function
9. Design/development 
  engineering—digital

10. Hardware engineering
11. Software design/development
12. Computer science
13. Science/physics/mathematics
14. Engineering (not elsewhere

specified)
15. Marketing/sales/purchasing
16. Consulting
17. Education/teaching
18. Retired
19. Other

1. General and corporate management
2. Engineering management
3. Project engineering management
4. Research and development 
  management
5. Design engineering management
  —analog
6. Design engineering management
  —digital
7. Research and development
  engineering
8. Design/development engineering
  —analog

D. Title
1. Chairman of the Board/President/CEO
2. Owner/Partner
3. General Manager
4. VP Operations
5. VP Engineering/Dir. Engineering
6. Chief Engineer/Chief Scientist
7. Engineering Management
8. Scientific Management
9. Member of Technical Staff

10. Design Engineering Manager
11. Design Engineer
12. Hardware Engineer
13. Software Engineer
14. Computer Scientist
15. Dean/Professor/Instructor
16. Consultant
17. Retired
18. Other 

C. Principal responsibility 
1. Engineering and scientific management
2. Management other than engineering
3. Engineering design
4. Engineering
5. Software: science/mngmnt/engineering

6. Education/teaching
7. Consulting
8. Retired
9. Other

Are you now or were you ever a member of IEEE? 
 Yes   No    If yes, provide, if known:

Membership Number                        Grade                            Year Expired

Select the numbered option that best describes yourself. This infor-
mation is used by IEEE magazines to verify their annual circulation. 
Please enter numbered selections in the boxes provided.

2016 IEEE MEMBERSHIP APPLICATION  

Title       First/Given Name                Middle                   Last/Family Surname

Primary Address

Street Address

City State/Province

Postal Code Country

Primary Phone

Primary E-mail

Secondary Address

Company Name Department/Division

Street Address  City State/Province

Postal Code Country

Secondary Phone  

Secondary E-mail

 Home  Business  (All IEEE mail sent here)  

 Home  Business  

(continued on next page)
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IEEE Aerospace and Electronic Systems AES010 25.00 12.50

IEEE Antennas and Propagation AP003 15.00 7.50

IEEE Broadcast Technology BT002 15.00 7.50

IEEE Circuits and Systems CAS004 22.00 11.00

IEEE Communications C0M019 30.00 15.00

IEEE Components, Packaging, & Manu. Tech. CPMT021 15.00 7.50

IEEE Computational Intelligence CIS011 29.00 14.50

IEEE Computer C016 56.00 28.00

IEEE Consumer Electronics CE008 20.00 10.00

IEEE Control Systems CS023 25.00 12.50

IEEE Dielectrics and Electrical Insulation DEI032 26.00 13.00

IEEE Education E025 20.00 10.00

IEEE Electromagnetic Compatibility EMC027 31.00 15.50

IEEE Electron Devices ED015 18.00 9.00

IEEE Engineering in Medicine and Biology EMB018 40.00 20.00

IEEE Geoscience and Remote Sensing GRS029 19.00 9.50

IEEE Industrial Electronics IE013 9.00 4.50

IEEE Industry Applications IA034 20.00 10.00

IEEE Information Theory IT012 30.00 15.00

IEEE Instrumentation and Measurement IM009 29.00 14.50

IEEE Intelligent Transportation Systems ITSS038 35.00 17.50

IEEE Magnetics MAG033 26.00 13.00

IEEE Microwave Theory and Techniques MTT017 17.00 8.50

IEEE Nuclear and Plasma Sciences NPS005 35.00 17.50

IEEE Oceanic Engineering OE022 19.00 9.50

IEEE Photonics PHO036 34.00 17.00

IEEE Power Electronics PEL035 25.00 12.50

IEEE Power & Energy PE031 35.00 17.50

IEEE Product Safety Engineering PSE043 35.00 17.50

IEEE Professional Communication PC026 31.00 15.50

IEEE Reliability RL007 35.00 17.50

IEEE Robotics and Automation RA024 9.00 4.50

IEEE Signal Processing SP001 22.00 11.00

IEEE Social Implications of Technology SIT030 33.00 16.50

IEEE Solid-State Circuits SSC037 22.00 11.00

IEEE Systems, Man, & Cybernetics SMC028 12.00 6.00

IEEE Technology & Engineering Management TEM014 35.00 17.50

IEEE Ultrasonics, Ferroelectrics, & Frequency Control UFFC020 20.00 10.00

IEEE Vehicular Technology VT006 18.00 9.00

PROMO CODECAMPAIGN CODE

 Yes     No     If yes, provide the following:

Member Recruiter Name ___________________________________

IEEE Recruiter’s Member Number (Required) ______________________

Credit Card Number

Name as it appears on card

Signature

Proceedings of the IEEE ................... print $47.00 or online $41.00
Proceedings of the IEEE (print/online combination) ..................$57.00
IEEE Standards Association (IEEE-SA) ................................................$53.00
IEEE Women in Engineering (WIE) .....................................................$25.00

Please total the Membership dues, Society dues, and other amounts 
from this page:
IEEE Membership dues    ............................................................. $_______
IEEE Society dues (optional)     ................................................. $_______
IEEE-SA/WIE dues (optional)    .................................................. $_______
Proceedings of the IEEE (optional)    ....................................... $_______
Canadian residents pay 5% GST or appropriate HST (BC—12%; NB, NF,
ON-13%;NS-15%) on Society payments & publications only.....................TAX $_______

AMOUNT PAID ................................................................................TOTAL $_______

Payment Method
All prices are quoted in US dollars. You may pay for IEEE membership 
by credit card (see below), check, or money order payable to IEEE, 
drawn on a US bank.

6

CARDHOLDER’S 5-DIGIT ZIPCODE

(BILLING STATEMENT ADDRESS) USA ONLY

MONTH                   YEAR
EXPIRATION DATE

5

7

7
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Please reprint your full name here

BETWEEN
1 MAR 2016-
15 AUG 2016

PAY

BETWEEN
 16 AUG 2015-
28 FEB 2016

PAY

Complete both sides of this form, sign, and return to:
IEEE MEMBERSHIP APPLICATION PROCESSING
445 HOES LN, PISCATAWAY, NJ 08854-4141 USA
or fax to +1 732 981 0225
or join online at www.ieee.org/join

Add IEEE Society Memberships (Optional)5 2016 IEEE Membership Rates 
(student rates available online)

6

More Recommended Options7

Payment Amount8

Were You Referred to IEEE?9
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5

Minimum Income or Unemployed Provision
Applicants who certify that their prior year income did not exceed US$14,700
(or equivalent) or were not employed are granted 50% reduction in: full-year dues,
regional assessment and fees for one IEEE Membership plus one Society Membership. 
If applicable, please check appropriate box and adjust payment accordingly. Student 
members are not eligible.

I certify I earned less than US$14,700 in 2015
I certify that I was unemployed in 2015

The 39 IEEE Societies support your technical and professional interests.
Many society memberships include a personal subscription to the core journal, 
magazine, or newsletter of that society. For a complete list of everything 
included with your IEEE Society membership, visit www.ieee.org/join. 
All prices are quoted in US dollars.

Please check the appropriate box.

One or more Society publications

Society newsletter

Legend—Society membership includes:
Online access to publication

CD-ROM of selected society 
publications

IEEE member dues and regional assessments are based on where 
you live and when you apply. Membership is based on the calendar 
year from 1 January through 31 December. All prices are quoted 
in US dollars.

Please check  the appropriate box.

RESIDENCE
United States .................................................................$197.00 ............. $98.50
Canada (GST)*.............................................................$173.35 ............... $86.68
Canada (NB, NF and ON HST)*...........................$185.11 ............... $92.56
Canada (Nova Scotia HST)*...................................$188.05 ............... $94.03
Canada (PEI HST)*.....................................................$186.58 ............... $93.29

Canada (GST and QST Quebec)..........................$188.01 ............... $94.01
Africa, Europe, Middle East......................................$160.00 ............... $80.00
Latin America.................................................................$151.00 ............... $75.50
Asia, Pacific .....................................................................$152.00 ............... $76.00
*IEEE Canada Business No. 125634188

Auto Renew my Memberships and Subscriptions (available when paying by credit card).
I agree to the Terms and Conditions located at www.ieee.org/autorenew

BETWEEN
16 AUG 2015-
28 FEB 2016
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1 MAR 2016-
15 AUG 2016
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