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Block diagram of the linear estimator.

M
Linear Estimator: ¢ = cjx1 + chxo + -+ + Cypxpr = Z CLTE

k=1

Error Criterion

Estimation Error: e=9 — y

Error Criterion:

lel,  Elle]] = avg]le]]

le|? = ee*,

Efle|’] = avg[le|’

Mean square error (MSE) Criterion:

P =E[ef’]



Linear Mean Square Error Estimation
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Linear Estimator: ¢ = Zgil CLTL = clx

where, input data vector: x = [x1,2,...,2]7

and parameter/coefficient vector: ¢ = [c1,¢2,...,cur

I

Random variables are assumed to have zero-mean.

Linear Mean Square Error Estimation
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Linear Estimator: §j = )M | cirp = clx

Minimization of the MSE P = E[|§j — y|?] with respect to
parameters c leads to a linear estimator cy.

The parameters cg is the linear MMSE estimator and g the
LMMSE estimate.



Error Performance Surface

Express the MSE P as a function of the parameter vector c.
P(c) = E[ef’]
= By - ")y - c"x)’]
= B|(y-c"x)y - x"o)]
= Elyy*] — E[c!xy*] — E[yxc] + E[c/ xx!c]
= E[lyf’] - ¢"E[xy’] - Elyx"]Jc + c"E[xx"]c

Power of the desired output: P, = E||y|?].
Correlation matrix R of data vector x is

R = BE[xx']

R is Hermitian and nonnegtive definite. R” = R.
Cross-correlation vector between data vector x and the

desired output vy is
d = E[xy’]

Error Performance Surface

Express the MSE P as a function of the parameter vector c.

P(c) = E[y’] - "E[xy*] — Elyx"]c + c"E[xx"]c
= Py—cHd— dfc + c"Re
S~~~ ~——

linear function of ¢ quadratic function of ¢

If R is positive definite (x”Rx > 0,Vx # 0), the quadratic
function is bowl-shaped and has a unique minimum.

The minimum of the error performance surface corresponds to
the optimum parameters cy.



Error Performance Surface
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Derivation of the Linear MMSE Estimator

Error performance surface (reconstruct)

P(c) = P,+ (Rc—d)"R}(Rc—d)-d’R™!d
P, + (c"RH —d" )R} (Rc —d) - d’R™!d
= P,+c"R'R'Rec - c"R*R7'd -d"R'Re
+dfR71d - d”’R"!d
= Py +cRe — ¢f'd — d¥¢

Indeed, P(c) = P, —d”"R7'd + (Rc — d)’R " (Rc — d)

A\ g \

-~

independent of ¢ quadratic function of (Rc—d)



Derivation of the Linear MMSE Estimator

Error performance surface,

P(c)=P,—d"R'd+ (Rc— d)R}(Rc —d)

(&

-~

independent of ¢ quadratic function of (Rc—d)

R!is also a positive definite matrix. That is,
xAR"1x >0, Vx#0

The minimum is achieved x R~!x = 0 when x = 0 (zero
vector).

Therefore, the minimum of the error performance surface is
reached when Rc —d = 0.

RC()Zd

Derivation of the Linear MMSE Estimator

Error performance surface,

A\

P(c) = P, —d”"R7'd+ (Rc — d)"R " (Rc — d)

independent of ¢ quadratic function of (Rc—d)

The minimum of the error performance surface is reached
when Rc —d = 0.

Normal Equation

RCOZd

The linear MMSE estimator ¢y is
co=R7'd

The MMSE is P(co) = P, — dR~!d = P, — dfl¢,



Excess MSE

If ¢ is a deviation from the optimum vector cy, i.e.,
c = cp + €, we have

P(c) = P(co +¢€) = P(cy) + ¢7Re

positive

Excess MSE = ¢7R¢

Principle-Component Analysis of Linear MMSE Estimator

Eigen-decomposition of correlation matrix R
R = QAQ”
where

Q = [@miq2 - qum]
A = diag{)\l,/\z,...,/\M}

qr and A\x are the kth eigenvector and the corresponding
eigenvalue of matrix R.

Decomposition:

M
R = Maiaf +Xeaead +... + Avamal; = > Maral
k=1



Principle-Component Analysis

Each vector q; has a length of one (normalized)

lakll2 = v/ aflqp, =1, Vk

lanll3 = atlqr =1, Vk

qx's are orthogonal to each other
aflaq =0, k#I
Therefore, Q is a unitary matrix.
Q'Q=QQ" =1
— Ql=qf

Correlation matrix R is positive definite and Hermitian
R = R. The eigenvalues {\;}2L, are real and positive.

Principle-Component Analysis

Rotation of a vector (coordinate transformation)

ch = Qfcy or cy=Qc

Let us check the (squared) length of the vector
leoll* = (Qch) " Qe = 5" Q™ Qep = [leg”

This means that he transformation only changes the direction
of the vector but not its length.

We can also rotate vector d

d=Q7d or d=Qd



Principle-Component Analysis

The Normal Equation
Rcyp=d
Substituting R = QAQ in the normal equation, we have
QAQ¢cy=d
It follow that (left multiplying with Q)
AQT¢cy = Qfd
Acy=d’
where d’ = Q¥ d.

Principle-Component Analysis

This is a “decoupled” Normal Equation

Acy=d’

Because A is diagonal, it can be written into a set of M
equations
Aicg; =d;, 1<i<M

A set of M first-order equations. If A\; # 0, we have

o = 1<i<M
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Principle-Component Analysis

The minimum mean square error (MMSE) becomes

Py =

The excess MSE becomes

AP = ¢"Re
¢TQAQfc
— vHAV

M
= Y AT
=1

where v = QHé.

Py — dHC()
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P, — d'f ¢
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Figure: Contours of

principle-component axes for excess
MSE.



Principle-Component Analysis

The MMSE estimator is

co = R

The MMSE estimate is

o = céqx
M g
d’.

= ) H(qi'x)
i=1 "

Principle-Component Analysis

The MMSE estimate is
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Figure: Principle-components representation of the Optimal linear
estimator.



Principle of Orthogonality

The correlation of two (zero-mean) random variables is
equivalent to the inner product of two vectors in the vector
space (Hilbert space).

(z,y) = Elzy’]
The squared length of a vector is
|2]* = (z, ) = E[|2[*]
Therefore, by the Cauchy-Schwartz inequality, we have

(o, 9)* < llz[lly

The two random variables are orthogonal x L vy, if

(x,y) = E[zy*] = 0 = uncorrelated

Principle of Orthogonality

Intuitive interpretation for MMSE

E[xef] = E[x(y* —x"co)]
E[xy*] — E[xx"]cg
= d— Rcgg
= 0

Orthogonality Principle of MMSE Estimation

Elzmeg] =0, for1<m <M

The estimation error is orthogonal to the data used for the
estimation.



Principle of Orthogonality

Figure: lllustration of the orthogonality principle. z,,, 1 eg,m =1, 2.

Applying the Pythagorean theorem, we have

Iyl = llgoll* + lleol* or  Ellyl*) = Ellgo|*] + Elleol”]



